Skip to main content

Science 1001 – Paul Parsons ***

Paul Parsons is a brilliant science writer – which, frankly, is just as well as he’s taken on a huge challenge here. Doubly so, in fact. The first hurdle is simply writing a book covering all of science in 1001 short articles. As he admits himself, it’s a huge paring down job to fit it all in. The second hurdle is making a book in this format readable. We’ll see how he does.
It’s a handsome, if rather heavy book, somewhere between a typical hardback and a small coffee table book in size (though with floppy covers). Inside, it’s divided into 10 main sections – from the obvious ones like physics and biology, through social science and ‘knowledge, information and computing’, to ‘the future’. Each section is split into topics – so in physics you might get ‘electricity and magnetism’ and within each topic there are around 12 entries.
In a sense, then, this is a mini-encyclopaedia of science, though arranged by subject, rather than alphabetically. But it’s nowhere near as dull as that sounds. Parsons manages to encapsulate many of the (sometimes complex) topics superbly in what is usually just a couple of paragraphs. Not only does he cram a lot in, but the text is always readable with minimal jargon. There have to be some technical terms, though – where possible he uses a kind of hypertext structure, highlighting keywords that have their own topic. Inevitably, good writer though Parsons is, some of these topics are extremely summary. It’s all very well to cover Schrödinger’s Cat in a couple of paragraphs (though I think it’s unfortunate he does – it’s hardly crucial to quantum physics), but less practical to cover, say, the whole of M-theory.
I really enjoyed many of the entries – they are mini-articles in their own right, and often left me wanting more. (In fact each one could do with a ‘if you want to read more, try this book’ line at the end).
Given the breadth of the scope I can’t be sure of the accuracy of all the entries. A handful in topics I know something about did raise an eyebrow. Right at the beginning we are told acceleration is the rate at which speed, rather than velocity, is changing. This isn’t just a case of the terminology – it does refer to the scalar speed rather than the vector velocity, and that is just wrong. Not wrong, but slightly confusing is the use of the term ‘equivalence principle’ in the Galilean sense of objects of different mass falling at the same speed in any particular gravitational field. It is more commonly used in the Einsteinean sense of the equivalence of gravity and acceleration, so could confuse people. Another entry that was very misleading was that on escape velocity. This explicitly states that a rocket has to travel at escape velocity to escape from Earth’s gravitational field. That is very wrong. A projectile, like a bullet, needs to travel at escape velocity – but a rocket can travel at 5 miles per hour and escape provided it remains under power. This section definitely needs revising.
However, these and any other errors are a tiny fraction of the entries, something you would expect in any book of this scale. I do have one other concern, though – what this book is for. It really isn’t the sort of book you sit down and read from cover to cover (which is why, despite liking it, I can only give it 3 stars, as a reference book is only borderline popular science). It’s much more something to dip in. In his introduction, the author says ‘My aim as a writer was to combine the breadth of a reference book – for example, a dictionary of science – with the accessibility and sense of fun that you get from a piece of popular science writing.’ This is fine, and the entries are very readable, but there is no way you can give much of the feel of good popular science writing in a couple of paragraphs. So in the end, it is really a reference book. And then we have a challenging thought.
Remember the way those keywords are highlighted like hypertext. How much better if they were hypertext. This arguably shouldn’t be a book, it should be a website. I sympathise with Paul Parsons, because as an author you get paid for writing a book, but it’s very difficult to get money out of a website – nonetheless, that’s what this is. And then you have to put it up against the likes of Wikipedia. Okay, Wikipedia entries aren’t anywhere near as readable as these, but the science entries are usually excellent, they often have a fair introductory couple of paragraphs, equivalent to these mini-articles, but then plunge into impressive depth if you want more. Wikipedia is nowhere near as consistent, but it is very powerful, and easy to access.
So this book is well written, covers a huge range and is a wonderful project. It would perhaps work well as a dip-in book to keep in the loo, or a waiting room, or another ‘five minutes to spare’ location. But it isn’t a read-through book, and it can’t compete as a reference. My own mini-article book on physics suffered from exactly the same criticism in its review. A lovely book, but perhaps a bit of a folly in today’s multimedia environment.

Paperback:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

On the Fringe - Michael Gordin *****

This little book is a pleasant surprise. That word 'little', by the way, is not intended as an insult, but a compliment. Kudos to OUP for realising that a book doesn't have to be three inches thick to be interesting. It's just 101 pages before you get to the notes - and that's plenty. The topic is fringe science or pseudoscience: it could be heavy going in a condensed form, but in fact Michael Gordin keeps the tone light and readable. In some ways, the most interesting bit is when Gordin plunges into just what pseudoscience actually is. As he points out, there are elements of subjectivity to this. For example, some would say that string theory is pseudoscience, even though many real scientists have dedicated their careers to it. Gordin also points out that, outside of denial (more on this a moment), many supporters of what most of us label pseudoscience do use the scientific method and see themselves as doing actual science. Gordin breaks pseudoscience down into a n

A (Very) Short History of Life on Earth - Henry Gee *****

In writing this book, Henry Gee had a lot to live up to. His earlier title  The Accidental Species was a superbly readable and fascinating description of the evolutionary process leading to Homo sapiens . It seemed hard to beat - but he has succeeded with what is inevitably going to be described as a tour-de-force. As is promised on the cover, we are taken through nearly 4.6 billion years of life on Earth (actually rather more, as I'll cover below). It's a mark of Gee's skill that what could have ended up feeling like an interminable list of different organisms comes across instead as something of a pager turner. This is helped by the structuring - within those promised twelve chapters everything is divided up into handy bite-sized chunks. And although there certainly are very many species mentioned as we pass through the years, rather than feeling overwhelming, Gee's friendly prose and careful timing made the approach come across as natural and organic.  There was a w

Michael D. Gordin - Four Way Interview

Michael D. Gordin is a historian of modern science and a professor at Princeton University, with particular interests in the physical sciences and in science in Russia and the Soviet Union. He is the author of six books, ranging from the periodic table to early nuclear weapons to the history of scientific languages. His most recent book is On the Fringe: Where Science Meets Pseudoscience (Oxford University Press). Why history of science? The history of science grabbed me long before I knew that there were actual historians of science out there. I entered college committed to becoming a physicist, drawn in by the deep intellectual puzzles of entropy, quantum theory, and relativity. When I started taking courses, I came to understand that what really interested me about those puzzles were not so much their solutions — still replete with paradoxes — but rather the rich debates and even the dead-ends that scientists had taken to trying to resolve them. At first, I thought this fell under