Skip to main content

Feature - Can you discover the periodic table?

Source: Wikipedia
I follow the excellent historian and philosopher of chemistry Eric Scerri on Facebook and a recent post of his intrigued me.

In it, Eric uses the verb 'discovered' for what Mendeleev did with periodic table. When I queried this, he suggested that the use of the term depended on whether or not you are a realist. But I'm not sure if that's true.

Let's take a simpler example, then come back to the periodic table. Specifically, we'll use the star Betelgeuse, the distinctly red one of the four main stars of Orion.

If I'm a realist*, then I think there is something real out there that I am labelling Betelgeuse. In good Kantian fashion, I can't know the reality - the 'Ding and sich' - but I can report on the sensory data from Betelgeuse and believe that I am talking about something that really exists. As it exists independent of humanity, we can discover it. However, Betelgeuse is also a class M star on the endearingly random looking stellar classification system that goes from O to B, A, F, G, K, and M. This system is not part of the reality that is Betelgeuse, it is a classification system that people devised - it's a representation of something - a different class of thing to a star. As such, the classification system cannot be discovered: it has to be invented or created by human beings.

If I am a non-realist, who presumably doesn't thing there is a defined reality behind the label Betelgeuse, this has no effect on the constructed classification system, which is still invented or created.

Let's now shift that picture to Mendelev and the periodic table. As a realist I can accept that there are relationships between different atoms based on their atomic weights and properties - that is something that can be discovered. But like the stellar classification system, I would suggest that a periodic table is a representation, a model, not an aspect of reality. As such, even as a realist, I would suggest it can only be created or devised, not discovered.

* Note this is my interpretation of these terms - not everyone will necessarily agree

UPDATED - Eric has kindly replied - his response is below. I still respectfully disagree - not that there isn't some inherent structure reflecting atomic structure, but just that the concept of a two dimensional table on a piece of paper is just not a natural object - it's an artificial human model, based on the available data - and as such I don't believe it can be 'discovered'. I perhaps confused the issue by bringing in the stellar classification system, which I only intended as a simpler example to start with, but seems to have got in the way of the point!

Eric Scerri: You raise a very interesting question.  However I want to respectfully disagree with you since I think that the two cases you compare are not analogous in the way that you claim they might be.

In the case of the periodic table there is no continuity between each of the elements.  What I mean is that there are no intermediate elements with fractional atomic numbers.  The elements are strictly discrete a feature was in a sense a foreshadowing of the discovery of the discreteness of quantum mechanics.  Not surprisingly the periodic table is broadly speaking explained by quantum mechanics, which it helped in getting started in the first place (Bohr, Pauli etc.).

In the case of the Russell-Hertzprung diagram one is dealing with a continuum of possibilities, an infinite number of intermediate cases.

Returning to the periodic table, we now understand why an element falls into a particular group and shows similarities with several other elements.  It’s because they share the same number of valence electrons.  Of course electronic configuration does not cause chemical behavior in any strong sense of causation and it is more of a correlation between number of outer electrons and chemical behavior.  The deeper ‘cause’ is understood by appealing to the Schr√∂dinger equation for any particular atom which captures the dynamics of the atom in addition than the mere number of outer electrons.  

Correct me if I am wrong, but there are no counterparts to either such features in the case of the classification of stars.

What I am really driving at is this.  In the case of the periodic table one has a natural system of classification and perhaps the most natural system of classification one can think of in all of science.

In the case of the R-H diagram we have an example of an artificial system of classification.  There is nothing intrinsic in the stars that allows us to demarcate between one classification label and another.  Stars could have been classified otherwise, and so it’s not a ‘natural system’.  To take a more extreme example, the Dewey Decimal system of book classification is also artificial.  It is we who decide how books in the various disciplines should be subdivided and ordered.  

In the case of the periodic table nature is being carved at the joints to use a favorite phrase among realists.  The ordering principle of atomic number is given to us by nature.  It is not imposed artificially.   

Feature by Brian Clegg

I follow the excellent historian and philosopher of chemistry Eric Scerri on Facebook and a recent post of his intrigued me.

In it, Eric uses the verb 'discovered' for what Mendeleev did with periodic table. When I queried this, he suggested that the use of the term depended on whether or not you are a realist. But I'm not sure if that's true.

Let's take a simpler example, then come back to the periodic table. Specifically, we'll use the star Betelgeuse, the distinctly red one of the four main stars of Orion.

If I'm a realist*, then I think there is something real out there that I am labelling Betelgeuse. In good Kantian fashion, I can't know the reality - the 'Ding and sich' - but I can report on the sensory data from Betelgeuse and believe that I am talking about something that really exists. As it exists independent of humanity, we can discover it. However, Betelgeuse is also a class M star on the endearingly random looking stellar classification system that goes from O to B, A, F, G, K, and M. This system is not part of the reality that is Betelgeuse, it is a classification system that people devised - it's a representation of something - a different class of thing to a star. As such, the classification system cannot be discovered: it has to be invented or created by human beings.

If I am a non-realist, who presumably doesn't thing there is a defined reality behind the label Betelgeuse, this has no effect on the constructed classification system, which is still invented or created.

Let's now shift that picture to Mendelev and the periodic table. As a realist I can accept that there are relationships between different atoms based on their atomic weights and properties - that is something that can be discovered. But like the stellar classification system, I would suggest that a periodic table is a representation, a model, not an aspect of reality. As such, even as a realist, I would suggest it can only be created or devised, not discovered.

* Note this is my interpretation of these terms - not everyone will necessarily agree

UPDATED - Eric has kindly replied - his response is below. I still respectfully disagree - not that there isn't some inherent structure reflecting atomic structure, but just that the concept of a two dimensional table on a piece of paper is just not a natural object - it's an artificial human model, based on the available data - and as such I don't believe it can be 'discovered'. I perhaps confused the issue by bringing in the stellar classification system, which I only intended as a simpler example to start with, but seems to have got in the way of the point!

Eric Scerri: You raise a very interesting question.  However I want to respectfully disagree with you since I think that the two cases you compare are not analogous in the way that you claim they might be.

In the case of the periodic table there is no continuity between each of the elements.  What I mean is that there are no intermediate elements with fractional atomic numbers.  The elements are strictly discrete a feature was in a sense a foreshadowing of the discovery of the discreteness of quantum mechanics.  Not surprisingly the periodic table is broadly speaking explained by quantum mechanics, which it helped in getting started in the first place (Bohr, Pauli etc.).

In the case of the Russell-Hertzprung diagram one is dealing with a continuum of possibilities, an infinite number of intermediate cases.

Returning to the periodic table, we now understand why an element falls into a particular group and shows similarities with several other elements.  It’s because they share the same number of valence electrons.  Of course electronic configuration does not cause chemical behavior in any strong sense of causation and it is more of a correlation between number of outer electrons and chemical behavior.  The deeper ‘cause’ is understood by appealing to the Schr√∂dinger equation for any particular atom which captures the dynamics of the atom in addition than the mere number of outer electrons.  

Correct me if I am wrong, but there are no counterparts to either such features in the case of the classification of stars.

What I am really driving at is this.  In the case of the periodic table one has a natural system of classification and perhaps the most natural system of classification one can think of in all of science.

In the case of the R-H diagram we have an example of an artificial system of classification.  There is nothing intrinsic in the stars that allows us to demarcate between one classification label and another.  Stars could have been classified otherwise, and so it’s not a ‘natural system’.  To take a more extreme example, the Dewey Decimal system of book classification is also artificial.  It is we who decide how books in the various disciplines should be subdivided and ordered.  


In the case of the periodic table nature is being carved at the joints to use a favorite phrase among realists.  The ordering principle of atomic number is given to us by nature.  It is not imposed artificially.   

Comments

Popular posts from this blog

Superior - Angela Saini *****

It was always going to be difficult to follow Angela Saini's hugely popular Inferior, but with Superior she has pulled it off, not just in the content but by upping the quality of the writing to a whole new level. Where Inferior looked at the misuse of science in supporting sexism (and the existence of sexism in science), Superior examines the way that racism has been given a totally unfounded pseudo-scientific basis in the past - and how, remarkably, despite absolute evidence to the contrary, this still turns up today.

At the heart of the book is the scientific fact that 'race' simply does not exist biologically - it is nothing more than an outdated social label. As Saini points out, there are far larger genetic variations within a so-called race than there are between individuals supposedly of different races. She shows how, pre-genetics, racial prejudice was given a pseudo-scientific veneer by dreaming up fictitious physical differences over and above the tiny distinct…

Artificial Intelligence - Yorick Wilks ****

Artificial intelligence is one of those topics where it's very easy to spin off into speculation, whether it's about machine conciousness or AI taking over the world (and don't get me onto the relatively rare connection to robots - cover designer please note). All the experience of AI to date has been that it has been made feasible far slower than originally predicted, and that it faces dramatic limitations. So, for example, self-driving cars may be okay in limited circumstances, but are nowhere near ready for the commute home. Similarly, despite all the moves forward in AI technology, computers are so-so at recognising objects after learning from thousands of examples - sometimes fooled by apparently trivial surface patterning - where humans can recognise items from a handful of examples.

Even so, we can't deny that AI is having an influence on our lives and Yorick Wilks, emeritus professor of AI at the University of Sheffield, is ideally placed to give us a picture …

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …