Skip to main content

Dana Mackenzie – Four Way Interview

Dana Mackenzie is the author of The Big Splat, or How Our Moon Came to Be (Wiley), among other books. He is a frequent contributor to Science, Discover, and New Scientist. He has a PhD in mathematics from Princeton and was a mathematics professor for thirteen years before becoming a full time writer. His latest book is The Universe in Zero Words.
Why maths?
To me, mathematics is the most universal language. It is a subject with a continuous unbroken tradition from the ancient Chinese, Babylonians, and Egyptians to the present day – a longer tradition than any other science and virtually any other human endeavor. It is an enabling subject, in the sense that every other science depends on it to some extent, and generally speaking the more modern a science becomes, the more explicitly it incorporates mathematical reasoning and ideas.
Most importantly and most personally for me, I love mathematics because there is no other field I know of where truth and beauty are so closely intertwined. They are related in the other sciences as well, but I still feel feel that scientific truths are to some extent contingent and occasionally a result of happenstance. Our knowledge is based upon imperfect data and our imperfect interpretations thereof. In
mathematics, by contrast, nothing is ever true by accident. A mathematical theorem, once proven correctly, can never be falsified. (It can only become irrelevant, and even then it often returns to relevance when you least expect it.) The best theorems, and the best proofs, are almost always the ones with the greatest beauty and economy of ideas.
Why this book?
My purpose in writing this book is to demystify mathematics, and in particular to demystify equations.
For many people, an equation is a forbidding and scary thing. It looks like some kind of mystical incantation filled with secrets they are not privy to. And yet for scientists, and especially for mathematicians, it is exactly the opposite. Words are too imprecise and clumsy to express the fine details of a mathematical idea; an equation is often the only way to do it. This is why I called the book The Universe in Zero Words - because by opening yourself up to equations (which typically have zero words), you open yourself to seeing the universe more clearly.
To compare words to equations, imagine comparing a painting of Earth to a Google map. No matter how well executed, the painting is rough and inaccurate. When you zoom in on it, you don’t see any new geographic details. By contrast, the farther you zoom into a Google map, the more interesting details you see. It is the same way with an equation. This book is an attempt to help the reader through that process, to see the “Google Maps” version of mathematics rather than the caricature version that popular culture presents us.
I also wrote this book because I wanted to write a mathematics book! My first book (The Big Splat, or How Our Moon Came to Be) was about a subject that I had no special training in when I began the project. It was a great way to exercise and develop my journalistic muscles. For my second book, I wanted to write about something that I already knew a lot about. This allowed me to write from a much more personal point of view, rather than the dispassionate view of the journalist or historian.
What’s next?
In the short term, I am continuing to write a series of booklets for the American Mathematical Society called What’s Happening in the Mathematical Sciences. The next one in the series, volume 9, should come out early next year, and I am very busy with that and hoping that I can meet my deadline.
In the long term, I expect that at some point I will get to work on another trade book. I love writing the “What’s Happening” series, but I have to admit that it reaches a rather narrow audience. At this point I can only describe the broadest features of what I am looking for in my next mass market book. Having written one book “far from home” (about planetary science) and one “close to home” (about mathematics) I will probably venture “farther from home” again. But I may change that plan if The Universe in Zero Words is a big success, and if there seems to be a big demand for another mathematical book from me. I would also be interested in writing a book that takes place over a shorter time frame, because both of my previous books covered nearly the whole period of recorded history. There is something to be said for the classical unities of time, space, and action (although I would not interpret themtoo literally).
What’s exciting you at the moment?
Mostly the things I have written about most recently and the things I am writing about right now. That would include an article I wrote for Science magazine about robotic flapping birds, and a chapter I wrote for What’s Happening in the Mathematical Sciences about mathematical algorithms to solve Rubik’s cube. An interesting thing that they had in common was that for the first time I found myself using YouTube as a research tool! There is an absolutely amazing video on YouTube of one of the new robotic birds, designed by a German company called Festo, flying over the audience at a TED conference in Edinburgh. You should look it up if you haven’t seen it. And there are many, many amazing videos on YouTube of “speedcubers” — people who solve Rubik’s cube as quickly as possible. Some use their hands, some use their feet, some do it blindfolded! The current world record for solving Rubik’s cube (by a human) is 5.66 seconds. I don’t know about you, but I can’t even unlock the door to my house in 5.66 seconds!

Comments

Popular posts from this blog

The Great Silence – Milan Cirkovic ****

The great 20th century physicist Enrico Fermi didn’t say a lot about extraterrestrial life, but his one utterance on the subject has gone down in legend. He said ‘Where is everybody?’ Given the enormous size and age of the universe, and the basic Copernican principle that there’s nothing special about planet Earth, space should be teeming with aliens. Yet we see no evidence of them. That, in a nutshell, is Fermi’s paradox.

Not everyone agrees that Fermi’s paradox is a paradox. To some people, it’s far from obvious that ‘space should be teeming with aliens’, while UFO believers would scoff at the suggestion that ‘we see no evidence of them’. Even people who accept that both statements are true – including  a lot of professional scientists – don’t always lose sleep over Fermi’s paradox. That’s something that makes Milan Cirkovic see red, because he takes it very seriously indeed. In his own words, ‘it is the most complex multidisciplinary problem in contemporary science’.

He points out th…

The Order of Time - Carlo Rovelli ***

There's good news and bad news. The good news is that The Order of Time does what A Brief History of Timeseemed to promise but didn't cover: it attempts to explore what time itself is. The bad news is that Carlo Rovelli does this in such a flowery and hand-waving fashion that, though the reader may get a brief feeling that they understand what he's writing about, any understanding rapidly disappears like the scent of a passing flower (the style is catching).

It doesn't help either that the book is in translation so some scientific terms are mangled, or that Rovelli has a habit of self-contradiction. Time and again (pun intended) he tells us time doesn't exist, then makes use of it. For example, at one point within a page of telling us of time's absence Rovelli writes of events that have duration and a 'when' - both meaningless terms without time. At one point he speaks of a world without time, elsewhere he says 'Time and space are real phenomena.'…

The Happy Brain - Dean Burnett ****

This book was sitting on my desk for some time, and every time I saw it, I read the title as 'The Happy Brian'. The pleasure this gave me was one aspect of the science of happiness that Dean Burnett does not cover in this engaging book.

Burnett's writing style is breezy and sometimes (particularly in footnotes) verging on the whimsical. His approach works best in the parts of the narrative where he is interviewing everyone from Charlotte Church to a stand-up comedian and various professors on aspects of happiness. We get to see the relevance of home and familiarity, other people, love (and sex), humour and more, always tying the observations back to the brain.

In a way, Burnett sets himself up to fail, pointing out fairly early on that everything is far too complex in the brain to really pin down the causes of something as diffuse as happiness. He starts off with the idea of cheekily trying to get time on an MRI scanner to study what his own brain does when he's happy, b…