Skip to main content

Mapmatics - Paulina Rowińska ***

Popular mathematics can be hard to make engaging. Though some topics (such as infinity or zero) can be made interesting in isolation, usually it's best if it can be tied to something more concrete, and what Paulina Rowińska does here is to bring us the story of maps and the the maths behind them. Although Rowińska starts with Mercator and other early projections, it's not really a history of mapping - for example, there is no mention of Roger Bacon's description of using coordinates for mapping - instead the focus is the twin mathematical bases of mapping, geometry and trigonometry before moving onto other maths connections from fractals and operational research to Bayes' theorem.

We start with the nature of a curved world and the compromises that need to be made to translate a 3D surface onto a sheet of paper - compromises that are rarely stated and make a huge difference to the look of the map. This is mostly very engaging, except when it spends too long on geometry and trigonometry. Then there's a dive into fractals, based on Richardson's observations that country border lengths often vary as seen from either side of the border and Mandelbrot's formative 'How long is the coast of Britain?', straying into fractal dimensions. We then move onto the way maps need not be spatial representation - the classic example being the London tube map. Things get even more abstract as we move from maps to graphs (the node and connector type, not charts) and some well known mapping problems like travelling salesman and the four colour theorem. US gerrymandering gets its own chapter, as does Snow's cholera map and other such lifesaving mapping, before finally looking at what can just about be called mapping in terms of identifying the internal structure of the planet.

There are some great stories in here, but for me, unfortunately, once you've got over the genuinely interesting stuff about the difficulties of representing 3D geometry on a 2D map, a lot of the early mathematical basis is, frankly, a bit dull. It's no surprise that geometry and trigonometry figure large (the words do, after all, mean 'earth measuring' and 'triangle measuring'), but I always found them the most tedious aspect of maths. Mostly Rowińska avoids using too many mathematical formulations, but they do creep in quite regularly here. Later on we do get to more interesting mathematical areas such as topology and graph theory, but in these case the reverse happens: the maths isn't given enough depth to really get a grip of it - we might have been better with fewer topics and more detail once past the basics of projection.

In the first section, there's quite a lot about how the Mercator projection makes southern countries look smaller than they are in area, and northern states bigger, which some observers apparently take as a sort of colonial put down. This seems bizarre, as the point of the maps was initially navigation, but also it seems perfectly reasonable that early map makers would have seen things from their own country as a starting point. I presume map makers in the same period from southern countries would have seen things from their own viewpoint too, but this isn't explored.

It was particularly disappointed by the relative lack of illustrations, which I would have thought were essential for a book about maps. There are some, but, for example, when talking about the genuine limitations of Mercator and how other projections allow different types of information to be taken from the map, there are far too few illustrations to show us what those different projections would look like.

I liked what this book is trying to do, but I'm afraid I didn't particularly enjoy reading it.

Hardback:   
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg - See all Brian's online articles or subscribe to a weekly email free here

Comments

Popular posts from this blog

We Are Eating the Earth - Michael Grunwald *****

If I'm honest, I assumed this would be another 'oh dear, we're horrible people who are terrible to the environment', worthily dull title - so I was surprised to be gripped from early on. The subject of the first chunk of the book is one man, Tim Searchinger's fight to take on the bizarrely unscientific assumption that held sway that making ethanol from corn, or burning wood chips instead of coal, was good for the environment. The problem with this fallacy, which seemed to have taken in the US governments, the EU, the UK and more was the assumption that (apart from carbon emitted in production) using these 'grown' fuels was carbon neutral, because the carbon came out of the air. The trouble is, this totally ignores that using land to grow fuel means either displacing land used to grow food, or displacing land that had trees, grass or other growing stuff on it. The outcome is that when we use 'E10' petrol (with 10% ethanol), or electricity produced by ...

Battle of the Big Bang - Niayesh Afshordi and Phil Harper *****

It's popular science Jim, but not as we know it. There have been plenty of popular science books about the big bang and the origins of the universe (including my own Before the Big Bang ) but this is unique. In part this is because it's bang up to date (so to speak), but more so because rather than present the theories in an approachable fashion, the book dives into the (sometimes extremely heated) disputed debates between theoreticians. It's still popular science as there's no maths, but it gives a real insight into the alternative viewpoints and depth of feeling. We begin with a rapid dash through the history of cosmological ideas, passing rapidly through the steady state/big bang debate (though not covering Hoyle's modified steady state that dealt with the 'early universe' issues), then slow down as we get into the various possibilities that would emerge once inflation arrived on the scene (including, of course, the theories that do away with inflation). ...

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that ‘Galileo discovered the counterintuitive law behind a swinging o...