Skip to main content

Short Cut: Maths - Katie Steckles (Ed.) ****

As a reader, I'm generally something of a sceptic on the subject of highly illustrated books that cover a topic in a series of two page spreads, but I surprised myself by enjoying Short Cut: Maths. It's described online as a paperback, but it's actually a quite handsome hardback.

The book is divided into eight sections (numbers, structures, logic, geometry and shape, functions, probability and statistics, modelling and games) each of which contains six or seven spreads in the form of answers to questions. These range from the straightforward 'How high can you count on your fingers?' or 'Why can't you un-square a number?' to the intriguing 'Can a baby manage a crocodile?' and 'How many hairs are there on a bear?'

As is often the case with this style of book, there are several contributors whose names are quite hard to find - as well as consulting editor Katie Steckles, we have Sam Hartburn, Alison Kiddle, and Peter Rowlett (plus illustrator Robert Fiszer). The mini-articles are approachable and easy reading. They often take the starting point of a question and expand it to cover a wider issue. So, for example, the 'How many hairs' question is used to introduce the concept of Fermi problems - those where an exact solution is difficult, but it's relatively easy to take a short cut to an approximation. This is then used to illustrate the way that mathematical modelling works and how models are iteratively improved.

My main gripe with the book is the graphic style, which is a bit in-your-face. Each section has an introduction in which some key words are in CAPITALS for reasons that aren't entirely obvious, but totally break the flow. The introduction is then followed by a flowchart-like map of the section, which I didn't find particularly useful. And the page colours, primarily darkish blue and a vivid orange, had me reaching for the sunglasses. But I coped.

Overall, covers an interesting range of mathematical topics in an entertaining fashion. There just aren't enough popular maths titles out there, and this was a good addition to what's on offer.

Hardback:   
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg - See all Brian's online articles or subscribe to a weekly email free hereShort

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re

Deep Utopia - Nick Bostrom ***

This is one of the strangest sort-of popular science (or philosophy, or something or other) books I've ever read. If you can picture the impact of a cross between Douglas Hofstadter's  Gödel Escher Bach and Gaileo's Two New Sciences  (at least, its conversational structure), then thrown in a touch of David Foster Wallace's Infinite Jest , and you can get a feel for what the experience of reading it is like - bewildering with the feeling that there is something deep that you can never quite extract from it. Oxford philosopher Nick Bostrom is probably best known in popular science for his book Superintelligence in which he looked at the implications of having artificial intelligence (AI) that goes beyond human capabilities. In a sense, Deep Utopia is a sequel, picking out one aspect of this speculation: what life would be like for us if technology had solved all our existential problems, while (in the form of superintelligence) it had also taken away much of our appare