Skip to main content

Heinrich Päs - Five Way Interview

Heinrich Päs is a German theoretical physicist and professor at TU Dortmund University. He received a PhD from the University of Heidelberg for research at the Max-Planck-Institut in 1999, held postdoc appointments at Vanderbilt University and the University of Hawaii, and an Assistant Professorship at the University of Alabama. His research on particle physics, cosmology and the structure of space and time was on the cover of the Scientific American and the New Scientist magazine. It also got included in the collector's edition
Ultimate Physics: From Quarks to the Cosmos, next to a piece by Stephen Hawking. His latest book is The One.

Why physics?

Physics helps us to make sense of the universe. Both in the narrow sense, understood as space and time, stars and galaxies and the entire cosmic history, as in the more broad sense, as the myriad minds and things that populate the cosmos. Physics concepts help to elucidate economy and biology, neuroscience, information technology and traffic jams, weather, climate and pandemics, sports, music, arts, the list goes on… In that sense physics is something like a life philosophy that avails us to tackle all sorts of problems and questions. As such it makes our lives better and more easy, but for me the probably most important aspect is that it connects us to what the universe, deep down at the foundation really is. 

Why this book?

This is a book for everyone who wants to know what quantum mechanics, our best scientific theory, tells us about the fundamental reality. Everyone has heard about quantum mechanics, but few people realize that quantum mechanics usually isn’t taught as a theory about nature, but as a theory about our knowledge of nature. A humanity, rather than science. As soon as quantum mechanics is taken serious as a model for nature, it reveals a remarkable consequence, namely that the universe itself has to be understood as quantum object, and all seemingly individual objects in the universe are merged into this indivisible whole. This happens by fiat of a quantum process called 'entanglement', the topic of the 2022 physics Nobel prize. The universe itself, understood as a single quantum object, is the foundation physics should be based on. This is where physics should start, not with constituents as assumed in particle physics or string theory.   

Will it ever be possible to make testable predictions that distinguish this approach from others?

Adopting the universe as a quantum object doesn’t imply that we already have a concrete theory describing this quantum object. It is more a philosophy that should inspire theory building which isn’t a simple task. Once we have such theories, they will make predictions, and if we are lucky some of these predictions will be testable with the technological possibilities we have. In addition, there are gaps and open questions in our understanding of nature, such as how to describe gravity as a quantum field, what happens to information falling into black holes, why the mass of the Higgs boson is so small, and why the density of the dark energy accelerating the expansion of the universe is so tiny. My hope is that a paradigm shift away from constituents to quantum cosmology may help us to answer these questions.   

What’s next?

In fact physicists have already started to adopt a philosophy that takes quantum mechanics serious and puts it first. Research in this directions includes ideas that space and time may not be fundamental but emergent from a fundamental quantum reality beyond space and time. These are first steps only, not a comprehensive theory yet. Still, this past December, a group of physicists has published in Nature how such ideas are studied with Google’s quantum computer, by running a quantum algorithm that can be understood as a 'wormhole', a shortcut through space and time, in a 2-dimensional toy universe. Another consequence of entanglement may be that the physics at high energies and short distance scales isn’t independent of the physics at low energies and large distance scales. Earlier this year I have attended a workshop at the European center for particle physics CERN, where such phenomena and their possible consequences for particle physics have been discussed.  

What’s exciting you at the moment?

In physics I’m excited to ponder about such ways to probe a quantum notion of the universe and universal entanglement. My professional expertise is in neutrino physics, and neutrinos are tiny particles that interact extremely weakly. As a consequence, they are ideal probes for quantum processes. What’s more, a giant neutrino telescope in Antarctica has seen neutrinos with extremely high energies that originated long ago in far-away galaxies, properties that may help to elucidate a quantum nature of space and time.

I’m also interested in history and philosophy, and especially in the Renaissance age, which was pivotal in reviving ancient ideas about how everything is a part of one unified whole, ideas that are amazingly similar to what quantum mechanics teaches us about the universe today.  

But I’m most excited to see my three-year old son growing up. He loves water and the ocean, and we have a small sailboat. So I hope we can go sailing together this coming summer.



Comments

Popular posts from this blog

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re