Skip to main content

Infinite Powers - Stephen Strogatz ****

I missed this one when it came out, possibly because the cover looks somewhat amateurish. Stephen Strogatz starts by exploring the prehistory of calculus - arguably the most widely applied mathematical tool in physics and engineering. We tend to think of calculus starting with Newton and Leibniz, but there was a long prehistory stretching back to the Ancient Greeks. This involved using methods that might, for instance, mentally cut something up into smaller and smaller pieces, then rearranged those pieces in order to work out, for instance, the relationship between the area of a circle and its circumference. This background is delightfully introduced.

Strogatz takes us through some, though not all, of the intervening history before the real thing bursts on the scene, but oddly then gives up on the historical context, so we don't hear about Newton and Leibniz until we have absorbed a whole host of detail, including where necessary some equations, ranging from functions to the natural logarithm and its exponential function before we get on to the basics that lie behind differentiation.

Uncovering the fundamentals of the mathematics is the kind of thing Strogatz does brilliantly. He can really dive into what makes calculus tick. Things are less effective on the history front. We do eventually get both Newton and Leibniz's side of the story, but I found the way it was mixed up with mathematical detail made it difficult to absorb the message. Again we then lose the historical structure - no Bishop Berkeley and not much on the way that limits were introduced to fix the problem of infinitesimals (though this is touched on early on in the book). Partial differential equations get an introduction but with less detail, as does Fourier analysis. Along the way, Strogatz introduces a wide range of real world applications, and finally looks at future possibilities.

I had a couple of problems with the book. Strogatz sometimes gets carried away with floridity. For example, when talking about dividing a circle into quarters and arranging them in a line: ‘It’s certainly not a rectangle, so its area is not easy to guess. We seem to be going backward. But as in any drama, the hero needs to get into trouble before triumphing. The dramatic tension is building.’ He also commits the science writer's heresy of telling us 'During the Inquisition, the renegade monk Giordano Bruno was burned alive at the stake for suggesting that God, in His infinite power, created innumerable worlds.’ Not only was Bruno a friar, he was burned for conventional religious heresy, not his (often pseudo-) scientific views.

This was a book that couldn't decide what it was supposed to be. It started off as history of maths, but that petered out to be replaced by random historical snippets mixed in with an excellent exploration of what calculus is all about. I think it would be better to have either taken the historical approach throughout, fitting in the explanation of the maths, or to have based it purely around the maths with just passing references to the historical context. Yet despite that strange hybrid approach, there is so much to like in Strogatz's ability to bring the maths alive.

Paperback:   
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg - See all of Brian's online articles or subscribe to a weekly digest for free here

Comments

Popular posts from this blog

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on