Skip to main content

The Dance of Life - Magdalena Zernicka-Goetz and Roger Highfield ****

There is without doubt a fascination for all of us - even those who can find biology a touch tedious - with the way that a tiny cellular blob develops into the hugely complex thing that is a living organism, especially a human. In this unusual book which I can only describe as a memoir of science, Magalena Zernicka-Goetz, assisted by the Science Museum's Roger Highfield, tells the story of her own career and discoveries.

At the heart of the book, and Zernicka-Goetz's work, is symmetry breaking, a topic very familiar to readers of popular physics titles, but perhaps less so in popular biology. The first real breakthrough from her lab was the discovery of the way that a mouse egg's first division was already asymmetrical - the two new cells were not identical, not equally likely to become embryo and support structure as had always been thought.  As the book progresses, throughout the process of development we see how different symmetries are broken, with a particular focus on mammals, producing the different structures we see in a living organism.

We also read a fair amount on chimeras, where cells from different organisms can be combined (causing some dramatic newspaper headlines) and why they are valuable for research, with important and balanced discussion of the ethical limits of human embryo research, plus some fascinating material on effectively creating artificial embryoids. Part of the appeal here is the way that the authors portray the slow and not always steady progress - sometimes under significant attack from opposing scientists - that typifies real science, as opposed to the simplistic picture we often get, particularly from the way what we're taught at school simply delivers the end results without following the way the ideas and experiments have developed through a lot of grunt work.

Although the book is very well written, as someone from a physics background I do find the sheer quantity of things that have to be named a struggle. When I tell people physics is vastly simpler than biology, most non-scientists are non-plussed, but in physics, almost everything matter does can be dealt with using just three particles and two forces. Here, in one page alone, the authors feel the need to tell me about methylation, argenine residues, histones, trophectoderms, CARM1, H3, SOX2, NANOG and pluripotency transcription factors  - and that's by no means an unusual page.

Despite this, though, there was no doubt the book is fascinating. The only reason I've not given it five stars is that I'm not a fan of memoirs. It's not that I want a science book to be impersonal, and I appreciated some insights into Zernicka-Goetz's background (there were interesting parallels in her ingenuity arising from initially doing science under the limitations of working in 1980s Poland with Andre Geim's novel approach based on his early experience in Russia that led to the development of graphene) - but there was far too much autobiographical material for me. I appreciate a lot of readers love this, but I found it got in the way a little. (It was also weird, reading a book with two authors, written in the first person singular.) 

Ultimately, though, this remains a truly remarkable story and a book that deserves a place on any serious science bookshelf.

Hardback:     
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re