Skip to main content

The Dance of Life - Magdalena Zernicka-Goetz and Roger Highfield ****

There is without doubt a fascination for all of us - even those who can find biology a touch tedious - with the way that a tiny cellular blob develops into the hugely complex thing that is a living organism, especially a human. In this unusual book which I can only describe as a memoir of science, Magalena Zernicka-Goetz, assisted by the Science Museum's Roger Highfield, tells the story of her own career and discoveries.

At the heart of the book, and Zernicka-Goetz's work, is symmetry breaking, a topic very familiar to readers of popular physics titles, but perhaps less so in popular biology. The first real breakthrough from her lab was the discovery of the way that a mouse egg's first division was already asymmetrical - the two new cells were not identical, not equally likely to become embryo and support structure as had always been thought.  As the book progresses, throughout the process of development we see how different symmetries are broken, with a particular focus on mammals, producing the different structures we see in a living organism.

We also read a fair amount on chimeras, where cells from different organisms can be combined (causing some dramatic newspaper headlines) and why they are valuable for research, with important and balanced discussion of the ethical limits of human embryo research, plus some fascinating material on effectively creating artificial embryoids. Part of the appeal here is the way that the authors portray the slow and not always steady progress - sometimes under significant attack from opposing scientists - that typifies real science, as opposed to the simplistic picture we often get, particularly from the way what we're taught at school simply delivers the end results without following the way the ideas and experiments have developed through a lot of grunt work.

Although the book is very well written, as someone from a physics background I do find the sheer quantity of things that have to be named a struggle. When I tell people physics is vastly simpler than biology, most non-scientists are non-plussed, but in physics, almost everything matter does can be dealt with using just three particles and two forces. Here, in one page alone, the authors feel the need to tell me about methylation, argenine residues, histones, trophectoderms, CARM1, H3, SOX2, NANOG and pluripotency transcription factors  - and that's by no means an unusual page.

Despite this, though, there was no doubt the book is fascinating. The only reason I've not given it five stars is that I'm not a fan of memoirs. It's not that I want a science book to be impersonal, and I appreciated some insights into Zernicka-Goetz's background (there were interesting parallels in her ingenuity arising from initially doing science under the limitations of working in 1980s Poland with Andre Geim's novel approach based on his early experience in Russia that led to the development of graphene) - but there was far too much autobiographical material for me. I appreciate a lot of readers love this, but I found it got in the way a little. (It was also weird, reading a book with two authors, written in the first person singular.) 

Ultimately, though, this remains a truly remarkable story and a book that deserves a place on any serious science bookshelf.

Hardback:     
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...