Skip to main content

A Brief Guide to Artificial Intelligence - James Stone ***(*)

Some brief guides miss the point and in reality go on for rather a long time, but this one very much does what it says on the tin. Readable in an hour, it gives us the basics of what modern artificial intelligence is and how it works. To achieve such brevity, James Stone has cut away much of the support mechanism of popular science - so we get very little background and historical context, limited storytelling and not much about applications. Instead, the focus is laser-sharp on delivering the basics of how neural networks work, where modern AI is successful and where it has a long way to go.

Broadly, Stone identifies two areas where AI triumphs - image recognition and playing games. If I'm honest, perhaps he is a little generous on the first of these - as he points out himself, tiny elements undetectable to the human eye can be sufficient to totally change what an image is recognised to be, and most of the techniques (he takes us through different types of machine learning) require a very large amount of training material where (again as Stone acknowledges) humans can often learn to recognise something with just a handful of examples. The AI technology is on firmer ground with its game playing - in chess, go, backgammon and a range of computer games, AI is now unbeatable, and teaching humans new approaches. What perhaps Stone doesn't emphasise enough is how much this demonstrates that AI's real success is in non-real world applications where the rules are clear and relatively simple, even if they haven't been specified to the system. In the real world, things are often more messy, again something that is acknowledged in, for example, being far less optimistic about self-driving cars than is often the case.

Stone gives us a good simple introduction to neural networks, back propagation, four different kinds of machine learning (from semi-supervised to reinforcement) and the dangers of overfitting, making it clear that even current AI is doing significantly more than curve fitting. The book (probably sensibly) brushes aside fears about AI might take over the world and displace humans as somewhat far fetched at the moment.

My only real disappointment was at the end of the book, where Stone tells us true AI is likely to emerge relatively soon, given it took just millions of years for flying to develop in the natural world, but just 66 to get from the Wright brothers to the Moon landing, citing acceleration of advancement that could be experimental. There are two problems with this. One is that the proper modern comparison with the Wright brothers is not space travel but commercial flights. These did indeed get much faster. The Wright brothers had an airspeed in the tens of miles per hour. Within 73 years, passengers could fly at 1,350 mph. But Concorde has now been withdrawn for nearly 20 years - instead of speeding up, we fly at less than half the speed. Even if you do take the leap from Wright brothers to Apollo - yes, that only took 66 years. But in over 50 years since we have done nothing comparable in space, let alone gone further and faster. Just because there was acceleration in the past does not mean it will continue.

I give the guide four stars for its solid, approachable and extremely brief introduction to the modern field, but three stars for lacking context and effective narrative. While approachable and doing the job admirably, it's not outstandingly particularly to read without that contextual material. Even so, for the right purpose it's an excellent little book.

Paperback:  
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on