Skip to main content

Breakthrough - Marcus Chown *****

Update for new paperback title
The original title of this book was 'The Magicians': this may seem an odd one for a popular science book, but it referred to what Chown describes as ‘the central magic of science: its ability to predict the existence of things previously undreamt of which, when people went out and looked for them, turned out to actually exist in the real universe’. That may be true of all branches of science, but physics – which is what the book is about – is a special case, because its theories are rooted in mathematical equations rather than words. This makes the matter completely black-and-white: if the equations predict something you had no inkling of, then either the maths is wrong, or that thing really does exist. This book describes some remarkable instances where the maths was right.

Actually, I’m not sure the old title was strictly accurate. It’s true that it centres on people – both the theoreticians who came up with the predictions and the experimentalists who proved them right – but in most cases the ‘magic’ is something the human players simply stumbled across. Perhaps the real protagonists are the mathematical principles themselves. A couple of quotes in the book hint at this, such as this from Heinrich Hertz: ‘One cannot escape the feeling that these mathematical formulas have an independent existence and an intelligence of their own, that they are wiser than we are, wiser even than their discoverers’. Paul Dirac put it even more succinctly: ‘my equation was smarter than I was’.

The book recounts nine of the most impressive mathematical predictions in physics, eight of which might be described as ‘the usual suspects’: Le Verrier’s prediction of the planet Neptune, Maxwell’s prediction of electromagnetic waves and Dirac’s prediction of anti-particles, followed by neutrinos, the cosmic microwave background, black holes, the Higgs boson and gravitational waves. There’s a huge amount of fascinating science in that list, but I rushed through it because they’re so well known you probably already know what I’m talking about. But Chown’s other example is much less widely known – or I hope it is, because I was unaware of it until I read this book.

I knew that Fred Hoyle, before he became notorious for his rejection of the Big Bang theory and his wacky ideas about panspermia, did some pioneering work on the synthesis of chemical elements in stars. But it turns out that one prediction he made was as impressive as any of the other examples in this book. He knew stars had to make carbon – for the simple reason that we wouldn’t exist if they didn’t – yet there are no easy ways for them to do this. He couldn’t think of any hard ways, either, unless there was a highly improbable coincidence between carbon and helium energy levels. If there was, it would permit a resonant nuclear reaction to occur in the heart of red giant stars. Highly improbable or not, Hoyle knew that carbon exists, so his theory had to be correct – and carbon had to have an energy state at precisely 7.65 MeV. That wasn’t something that was known experimentally, or could be predicted by nuclear physics theory, but it had to be the case. After Hoyle persuaded a group of sceptical experimenters to look for it, he was the only one who wasn’t flabbergasted when they found it.

All the stories in the book are as dramatic and significant as that one. But the fact remains that they’re based on specialized, complex physics, and many authors would make heavy going of them. Not so Marcus Chown, who draws on his past forays into science fiction to produce a book that often reads more like a novel than a work of non-fiction. Some of the tricks he uses I really liked, such as the Quentin Tarantino style nonlinear narrative, jumping back and forth in time (often by many decades) between theoretical prediction and experimental verification. I was less happy with the fanciful dramatization of some of the scenes – such as Maxwell stopping outside Mary-le-Strand ‘utterly transfixed by the light sparkling on the surface of a puddle in the road’, or Einstein running his finger down a letter ‘nodding emphatically as he did so’ ¬– for which there’s no documentary evidence at all. I guess I want my non-fiction books to be 100 per cent factual – but that’s just me, and other readers might love this sort of thing. 

I have seen one or two negative comments about giving the book a new name being misleading. As I understand it, it's because the book came out at the height of the pandemic, so didn't get the exposure it deserved. Certainly, overall, it’s one of the best-written books about physics I’ve ever come across, and a highly enlightening one at that.

Paperback: 
Bookshop.org

 


Kindle 
Using these links earns us commission at no cost to you
Review by Andrew May

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re