Skip to main content

Deep Learning: John Kelleher **

This is an entry in a series from the MIT Press that selects a small part of a topic (in this case, a subset of artificial intelligence) and gives it an 'essential knowledge' introduction. The problem is, there seems to be no consistency over the target audience of the series.

I previously reviewed Virtual Reality in the same series and it kept things relatively simple and approachable to the general reader, even if it did overdo the hype. This book by John Kelleher starts gently, but by about half way through it has become a full-blown simplified textbook with far too much in-depth technical content. That's exactly what you don't want in a popular science title.

What we get is plenty of detail of what deep learning-based systems are and how they work at the technical level, but there is practically nothing on how they fit with applications (unless you count playing games), which are described but not really explained, nor is there anything much on the problems that arise when deep learning is used for real world applications. There is a passing reference, admittedly to the difficulties of understanding how a deep learning AI system came to a decision and how this clashes with the EU's GDPR requirement for transparency and explanation, but if feels more like this is done to criticise the naivety of the legislation than the danger of using such systems.

Similarly, I saw nothing about the dangers of deep learning systems using big data picking up on correlations that don't involve any causal link, nor does the book discuss the long tail problems that arise with inputs that are relatively uncommon and so are unlikely to turn up in the training data. Similarly we read nothing about the dangers of adversarial attacks, which can fool the systems into misinterpreting inputs with tiny changes, or the difficulties such systems have with real, messy environments as opposed to the rigid rules of a game.

Overall, the book is both pitched wrong and doesn't cover the aspects that really matter to the public. It may well do fine as an introductory text for a computer science student, but that doesn't fit with the blurb on the back, which implies it is for public consumption.

Paperback:   
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on