Skip to main content

Celestial Calculations - J. L. Lawrence ***

These days, amateur astronomers don’t need to do any calculations. If their telescope is of the ‘go-to’ kind, they just type in the name of the object they want to observe and the telescope does the rest. If they have an old-fashioned manual telescope, or if they want to see something that isn’t in the telescope’s database – such as the ISS or a satellite – they consult a mobile app or a website. With all these handy software aids, it’s easy to forget that what they’re doing – in a fraction of a second – is a long series of calculations of the sort astronomers used to have to do by hand.

Those calculations are what this book is all about – but before you go running for the hills, there’s no advanced mathematics in it. You’ll scour it in vain for differential equations, complex numbers, logarithms or x-y graphs – for the simple reason that none of those things existed when astronomers started doing the calculations we’re talking about. It does use a few trigonometric functions like sines and cosines – originally developed by the ancient Greek astronomer Hipparchus, not as a sideline but because he needed them for his day job – and anyone can find those buttons on a calculator app even if they’re not sure what they mean.

Some of the things the book shows you how to calculate, particularly in the first few chapters, won’t even look like astronomy to many people. There are calendar and time zone conversions, sunrise and sunset times, and the dates of equinoxes and solstices – but all of these are ultimately based on celestial motions. When the book moves on to the subject of orbits – whether of planets around the Sun or satellites around the Earth – there’s another surprise. The usual approach in popular science books is via Newton’s theory of gravity – but that’s not how J. L. Lawrence tackles it here. That’s because gravity is physics, and that’s not what this book is about. If all you need is a geometric description of orbits, you can find it in the work Kepler, dating from the very beginning of the 17th century – which is as ‘modern’ as the calculations in this book get.

Having written several books myself, I was struck by just how much effort the author must have put into this one. It’s close to 400 pages long, but that’s just the tip of the iceberg. By the very nature of the subject matter, Lawrence didn’t simply have to write words, he had to do calculations – sometimes several on a page. On top of that, the book comes with a suite of downloadable computer programs, which do things like plotting star charts and working out rise and set times for the Moon and planets. Of course, it’s easy enough to find other free software which can do the same things – often in a slicker and more flexible way – but here you get a step-by-step explanation of the logic behind the number crunching.

For the sort of person who is excited by the title Celestial Calculations, this book will be perfect; they can look forward to hours of enjoyment working through the examples. The catch is, I can’t imagine there are many people in that category. For a more general reader interested in popular science or amateur astronomy – and that includes me – the book still provides some fascinating insights, but it’s so long and detailed that reading it often verges on hard work rather than fun. Personally, I would have enjoyed it more if it had been a third of the length.
Paperback 
Kindle 
Using these links earns us commission at no cost to you
Review by Andrew May

Comments

Popular posts from this blog

Ctrl+Alt+Chaos - Joe Tidy ****

Anyone like me with a background in programming is likely to be fascinated (if horrified) by books that present stories of hacking and other destructive work mostly by young males, some of whom have remarkable abilities with code, but use it for unpleasant purposes. I remember reading Clifford Stoll's 1990 book The Cuckoo's Egg about the first ever network worm (the 1988 ARPANet worm, which accidentally did more damage than was intended) - the book is so engraved in my mind I could still remember who the author was decades later. This is very much in the same vein,  but brings the story into the true internet age. Joe Tidy gives us real insights into the often-teen hacking gangs, many with members from the US and UK, who have caused online chaos and real harm. These attacks seem to have mostly started as pranks, but have moved into financial extortion and attempts to destroy others' lives through doxing, swatting (sending false messages to the police resulting in a SWAT te...

Battle of the Big Bang - Niayesh Afshordi and Phil Harper *****

It's popular science Jim, but not as we know it. There have been plenty of popular science books about the big bang and the origins of the universe (including my own Before the Big Bang ) but this is unique. In part this is because it's bang up to date (so to speak), but more so because rather than present the theories in an approachable fashion, the book dives into the (sometimes extremely heated) disputed debates between theoreticians. It's still popular science as there's no maths, but it gives a real insight into the alternative viewpoints and depth of feeling. We begin with a rapid dash through the history of cosmological ideas, passing rapidly through the steady state/big bang debate (though not covering Hoyle's modified steady state that dealt with the 'early universe' issues), then slow down as we get into the various possibilities that would emerge once inflation arrived on the scene (including, of course, the theories that do away with inflation). ...

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that ‘Galileo discovered the counterintuitive law behind a swinging o...