Skip to main content

Einstein's Unfinished Revolution - Lee Smolin ****

You wait years for a book on the interpretations of quantum theory and then they appear in droves. In reality though, it's a good thing - each of them has brought its own slant and approach, and never more so than in Einstein's Unfinished Revolution from theoretical physicist Lee Smolin.

Although Smolin takes us on a tour of the best-known interpretations, he sets out his intention from the beginning - he is a realist and wants an interpretation that incorporates realism. That might not seem much of an ask - surely everyone in science wants realism? - until you realise that the long-prevailing approach, the Copenhagen interpretation is anti-realist. This is because we're dealing with a particularly theoretical physics view of the world. It's not that those who have held the Copenhagen interpretation don't think the world as a whole is real. Rather that the requirement that, say, a quantum particle has no location, just probabilities, until it interacts with something means that quantum theory is not a description of something 'real' in the usual sense.

The lack of realism was one of the reasons that Einstein became so uncomfortable with the way quantum theory was developing, making his famous remarks about playing dice, and Smolin plays this up as a defender of Einstein's position, particularly in the preface to the book. I found the way this was done a trifle disingenuous, as Einstein was also unhappy with non-locality, the idea that, say one quantum particle can influence another instantly at any distance - and it's impossible to have realism in quantum theory without non-locality. But this is only a passing irritation.

Smolin comes down firmly on the side of realism, more it seems for intuitive reasons than anything else, and accordingly looks at the possible approaches that embrace this. He gives an excellent overview of the deBroglie-Bohm pilot wave interpretation, which he clearly likes - in it, particles are real, always having a specific location - but is honest about issues with it, notably his dislike of the way that particles are steered by the pilot waves, but the particles can't influence the waves. He then takes us through the Many Worlds approach, which he impressively shreds (rather beautifully referring to it as 'magical realism'), before introducing one or two more esoteric possibilities.

Up to this point, Smolin has done what others have done, and does it very well, managing all this without any mathematics and with clear, approachable language. But then he faces the problem square on. No approach is totally satisfactory. And, for that matter, no one has managed to bring general relativity and quantum theory together despite decades of trying. He suggests, then, that we need to take a step back and start from scratch, giving us an overview of some, at the moment very toy, approaches to doing this.

This section is much harder to follow than the rest. When Smolin outlines his current ideas involving networks* of 'nads', what strikes me is both fascination and sadness. Fascination to see how such an edifice is constructed, but sadness because, for me, what he constructs seems far further from any idea of a comprehensible worldview than even the Copenhagen anti-realism. This is the only place where I got the feeling of a theoretical physicist detached from the rest of us, except when Smolin makes the assertion that the anti-science efforts of climate change deniers and some religious extremes reflects a lack of trust in science because of anti-realist quantum interpretations. This seems a very parochial worldview that, dare I say it, suggests theoretical physics has more influence in the world than it really has.

That isn't the end, though. Although very inward looking, it's well worth persevering with Smolin's short epilogue in which he explains the difficulties of making the leap away from the standard approaches at a fundamental level and starting over within the confines of the academic system, and ponders whether to make the leap - I found this genuinely moving.

Overall, while more effort was needed to make the nads comprehensible (and particularly seeming anything like reality), the book is an excellent contribution to thriving debate on what to do about the elderly enfant terrible of physics, quantum theory.

* Purists: I know they're not strictly networks, but it's alliterative. 
Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on