Skip to main content

Making Eden - David Beerling ****

I'll be honest up front - I found parts of Making Eden hard work to read. But the effort was more than rewarded. David Beerling makes a good case that botany is unfairly seen as the Cinderella of biology - it simply doesn't get the same attention as the animal side. I realised how true this was when I saw a diagram of a 'timeline of evolution of life on Earth' the other day. Out of about 30 entries, arguably three of them applied to plants. And yet, as Beerling makes clear, without plant life, the land would still be barren and the seas far less varied. No plants - no animals.

As someone with a very limited background in biology, I learned a lot here. The sophistication of some plant mechanisms are remarkable. Beerling dedicates a chapter, for example, to what he describes as 'gas valves', the stomata that open and close on the underside of leaves, allowing carbon dioxide in. The apparent downside is that they let moisture out - but as Beerling describes this is what allows, for example, trees to lift water up through their trunks in what are kind of upside-down fountains. It makes remarkable reading.

Similarly, I was fascinated by the discussion of a special kind of evolutionary jump that could have been responsible for major changes in evolutionary development, rather than natural selection as a result of the impact of individual mutations. In these jumps, whole genomes were duplicated, allowing one set of genes to carry on their jobs, while the copies could change, taking on different roles, before the two genomes merged back together. (There is apparently still some uncertainty about this, but Beerling tells us that 'evidence is mounting'.) And there was plenty more on where plants came from in the first place, deducing the role of ancient genes, the interaction between plants and symbiotic fungi, the contributions plants have made over history to climate change and the environmental crisis we currently face. I loved the suggestion that one contribution to mitigating growing carbon dioxide levels could be to give crops access to crushed basalt, which would encourage the plants to capture and store more of the carbon than usual.

Some of these chapters (such as the climate change and environmental ones) were straight forward, readable popular science. I found with some of the others I had to do a little light skipping when Beerling got too technical or delved into unnecessary detail. In the genetic-based chapters, this came across in the abundance of technical terms. I was reminded of Richard Feynman's infamous remark in Surely You Are Joking, Mr Feynman when naming cat muscles during a talk and the other students told him they knew all that. 'Oh, you do? Then no wonder I can catch up with you so fast after you've had four years of biology. They had wasted all their time memorising stuff like that, when it could be looked up in fifteen minutes.'

Picking a page at random in the Genomes Decoded chapter, I find at least 10 technical terms, some of which are mentioned here, but then never used again. It just makes the brain rattle a little. In other parts, Beerling describes in elegant detail how a particular distinction about a fossilised plant could be deduced - but there is so much detail I found my eyes drifting onwards to move things on a little.

Don't get me wrong - I am really glad I read this book. I have learned a lot and many parts were simply fascinating. I just wouldn't want to give the impression it's an easy read, where instead it takes some work, but rewards the reader richly.
Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Meteorite Hunters - Joshua Howgego *****

This is an extremely engaging read on a subject that everyone is aware of, but few of us know much detail about. Usually, if I'm honest, geology tends to be one of the least entertaining scientific subjects but here (I suppose, given that geo- refers to the Earth it ought to be astrology... but that might be a touch misleading). Here, though, there is plenty of opportunity to capture our interest. The first part of the book takes us both to see meteorites and to hear stories of meteorite hunters, whose exploits vary from erudite science trips to something more like an Indiana Jones outing. Joshua Howgego takes us back to the earliest observations and discoveries of meteorites and the initial doubt that they could have extraterrestrial sources, through to explorations of deserts and the Antarctic - both locations where it tends to be easier to find them. I, certainly, had no idea about the use of camera networks to track incoming meteors, which not only try to estimate where they wi...

Phenomena - Camille Juzeau and the Shelf Studio ****

I am always a bit suspicious of books that are highly illustrated or claim to cover 'almost everything' - and in one sense this is clearly hyperbole. But I enjoyed Phenomena far more than I thought I would. The idea is to cover 125 topics with infographics. On the internet these tend to be long pages with lots of numbers and supposedly interesting factoids. Thankfully, here the term is used in a more eclectic fashion. Each topic gets a large (circa A4) page (a few get two) with a couple of paragraphs of text and a chunky graphic. Sometimes these do consist of many small parts - for example 'the limits of the human body' features nine graphs - three on sporting achievements, three on biometrics (e.g. height by date of birth) and three rather random items (GNP per person, agricultural yields of various crops and consumption of coal). Others have a single illustration, such as a map of the sewers of Paris. (Because, why wouldn't you want to see that?) Just those two s...

Against the Odds - John Gribbin and Mary Gribbin ****

The number of women working in STEM subjects has expanded dramatically, but as John and Mary Gribbin make clear, in the history of science this is a very recent occurrence. Here, they bring us the stories of 12 women, from Eunice Newton Foote, born in 1819, to Vera Rubin, born in 1928 - effectively covering nearly 200 years in that Rubin died as recently as 2016. There are some names that will already be familiar from popular science histories (and deservedly so). You will find, for instance, Dorothy Hodgkin and Rosalind Franklin represented. But there are plenty like Foote that few will have come across, including Inge Lehmann, Chien-Sung Wu and Lucy Slater. While arguably Foote is there primarily to demonstrate the difficulties she faced (her discovery of an aspect of greenhouse gas behaviour was independently bettered within weeks), the rest have all made significant discoveries or developments against the odds and often missed out the recognition the deserved. The most prominent ob...