Skip to main content

The Cryotron Files - Iain Dey and Douglas Buck ****

This is a rip-roaring tale of remarkable technological achievements, cold war spying and a suspicious death at a very early age that has inevitably fostered conspiracy theories. Dudley Buck, the subject of the biography, made three hugely important contributions to computer science - yet he's still not widely known. I've read many books on the history of computer science, and this is the first time I've ever heard of him.

We start off with fairly familiar territory with Buck's background - it might feel a little dull - but once he's involved in computing, things get a whole lot more interesting. About the only aspect of the early biography that stands out is that Buck had an extremely unpleasant idea of what constitutes a prank, including electrocuting people and trying to build a bomb on campus. However, though he apparently continued as a practical joker when older, it seems his attempts, while still malicious, became less life-threatening.

In terms of computing technology, Buck was a key figure in the development of the magnetic core memory that was the mainstay of computing in the 60s, was producing lithographic integrated circuits well before the famous names of the microchip world, and devised a ferroelectric memory that was impractical at the time, but has since become a real thing. And all this before dying at the tragically young age of 32. In fact, the ferroelectric memory was in masters dissertation, and he didn't get a doctorate until shockingly late, having already made huge contributions.

Of itself, his computer engineering is impressive, but what makes the story far more intriguing is Buck's involvement in the shady world of 1960s espionage. He did a considerable amount of work for the NSA and was regularly sent off on missions, at least one to the Soviet Union, the details of which are sometimes still fuzzy, but making him a far more interesting character for a biography. And then there's his death. Buck died of a pulmonary condition. It was immediately after opening a package containing a wide range of chemical substances for use in his experimental work - and not long after the visit of a number of soviet scientists. At the time of writing this review, relatively soon after the Skripal affair, it's hard not to give at least some weight to the speculation that his death - working as he was on technology that could be used in guided missiles - was not accidental.

There is, sadly, one real disappointment with this book. Authors Iain Dey (a business journalist) and Douglas Buck (Buck's son) used a researcher to dig up historical material. It's a shame they didn't also have a science consultant, because the science and technology part of the book is dire. Luckily, it's almost incidental to the way the story is presented - it's far more about people and history, but it's a real shame that it couldn't have been better.

To give an example, the 'cryotron' in the title of the book (of which more in a moment) was a superconducting device. Early on we are told superconductors are 'chemical elements that only conduct electricity at ultralow temperatures.' Leaving aside that most modern superconductors aren't chemical elements, the specific elements mentioned through the book, and which later we are told 'naturally blocked an electric current at room temperature' are lead, tantalum and niobium - all reasonably good conductors at room temperature. If the authors think lead blocks an electric current, I hope they don't have cars that use lead-acid batteries.

That's weak basic science, but even the computer science has problems. We're told that 'The acronym RAM soon stuck and is still used today as an indication of a computer's processing speed.' Really? But the biggest issue is the way the cryotron is handled. This was a potential replacement for valves and transistors (which at the time were typically as much as a centimetre across). The cryotron was a tiny device that could fulfil a similar role. Unfortunately it was a dead end. It was slower than transistors and crucially could only work if supercooled with liquid helium. It might have had niche applications, but the need to keep it at a couple of degrees above absolute zero would always prevent it from being mainstream. As it happens, within a few years transistors on microchips had left it way behind.

Dey and Buck spoil the genuinely huge significance of Buck senior's work on magnetic cores, lithography and ferroelectric memory by overplaying the importance of the cryotron. At one point they say Dudley Buck 'had invented a whole new field of physics and electrical engineering.' There was no new physics here. Elsewhere they claim that the cryotron 'evolved into a device called a Josephson junction.' This is ludicrous. It's like saying a 13 amp plug 'evolved into a microchip' as they both carry electricity, involve metal junctions and work at room temperature. A Josephson junction was a totally new concept, derived from basic physics and to suggest that it had any relation to a cryotron is an insult to Brian Josephson. The authors even go so far as to suggest that a quantum computer 'runs on modified cryotrons.' No, it really doesn't. This is an attempt to over-inflate the importance of one of Buck's ideas that was a failure. It was good idea, but it happened not to work out. Technology development is like that.

There is no doubt, then, that there are issues with this book, but I come back to the to key aspects that make it a great read. Buck was a genius - what he achieved in computer engineering in a short timescale (especially given the amount of time he spent on other things) was truly remarkable. And his life story, intwined as it was with Cold War politics and espionage, equally makes for a fascinating insight into unsettling times.

Hardback:  

Kindle:  
Using these links earns us commission at no cost to you

Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re