Skip to main content

Totally Random - Tanya Bub and Jeffrey Bub **

It's difficult to decide just where the problems start with Totally Random. It's an attempt to communicate the oddities of quantum entanglement using a comic book format. There has already been an attempt to do this for quantum theory in general - Mysteries of the Quantum Universe, which managed to both have a bit of a storyline and get in a fair amount of quantum physics. Unfortunately the format also got in the way - so much space was taken up by the pictures that the words simply didn't manage to get the message across. Doubly unfortunately, this is also true of Totally Random, with the added negatives that it has no discernible storyline and it's rarely even visually interesting.

The attempt to explain entanglement suffers hugely because Tanya and Jeffrey Bub decided to use a set of analogies for quantum entanglement ('quoins', a kind of magic toaster device that entangles them, various strange devices to undertake other quantum operations) that don't so much help understand what's going on, as totally obscure what's supposed to be put across. It's a bit like trying to explain the rules of football using a box of kittens. It's far clearer if you get rid of the kittens and just explain the rules.

Visually, the cartoon style varies considerably. There are quite a few pages that contain nothing more than a shaded background with a series of frames each having a line of text in it. It's just a dialogue where each character's words sit in a different frame - the comic format adds nothing to what is, often, a series of mutual insults, providing particularly 'you had to have been there' humour. My favourite parts of the visuals by a long way are the odd pages introducing a section where actual papers, such as the EPR paper are portrayed in realistic form. Those do look rather cool.

Most of the key characters of the quantum story turn up in cartoon format. We meet Schrödinger, Heisenberg, Bohr, Pauli, Bohm, Einstein - plus one or two more tangential individuals such as Everett. There are a lot of 'insider jokes' in these sections, where, for example, Einstein produces in conversation many of his better lines on quantum theory from his letters to Max Born. Unfortunately, unless you know the topic already, these in-jokes will mean very little and produce strangely stilted dialogue.

I think that summarises the real issue with Totally Random. It's very much an in-joke for insiders. It doesn't explain entanglement: to the general reader, it obscures it with a pile of baggage that you have to have been there to understand. And even then it can be hard work. I'm fairly confident in my understanding of entanglement - I have a physics degree and I've read lots about it - but there were pages here I struggled to follow.

Sadly, the main feeling while reading Totally Random was tedium. With other graphic novel/comic presentations of non-fiction I've read, it has all been over far too quickly. Here I was thinking 'When will it end?' I was not inspired, but, rather, bored (or to sink to the level of the humour here, Bohred). It's a clever notion, but unfortunately the authors seem to be entirely the wrong people to make it work successfully.

Paperback:  

Kindle:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re