Skip to main content

A Mind at Play - Jimmy Soni and Rob Goodman ****

If you are familiar with the history of computing, there are a few names that you'll know well enough biographically to turn them into real people. Babbage and Lovelace, Turing and von Neumann, Gates and Jobs. But there's one of the greats who may conjure up nothing more than a name - Claude Shannon. If Jimmy Soni and Rob Goodman get this right, we're going to get to know him a lot better - and get a grip on his information theory, which sounds simple in principle, but can be difficult to get your head around.

If you haven't heard of Claude Shannon, you ought to have. He was responsible for two key parts of the theoretical foundations that lie beneath the computing and internet technology most of use everyday. Arguably, without Shannon's theory, for example, it would be impossible to slump down in front of Netflix and watch a video on demand.

I suspect one reason that Shannon's work is less familiar than it should be is that it lies buried deep in the ICT architecture. I was primarily a programmer for a number of years, but as someone writing applications - programs for people to use - I didn't have to give any thought to Shannon's theories. They were embodied by engineers at a lower level than I ever needed to access. In fact, I'm ashamed to say that when I was programming, though I could give you chapter and verse on Bill Gates, I'd never heard of Shannon, even though he was still alive back then.

What Soni and Goodman do really well is to give us a feel for Shannon, the man. The writing has an impressive ability to put is into the home town of Claude Shannon, or the corridors of Bell Labs as he rides his unicycle along them. At first glance, Shannon might seem quite similar to Richard Feynman in his combination of playfulness with amazing insight. But it soon becomes clear that Shannon was a far less likeable character - more introverted, dismissive of those he considered an intellectual inferior and with no real interest in helping his country in the war or with codebreaking, more undertaking this if and only if he could be offered something he found mentally stimulating. Soni and Goodman seem to find his obsession with juggling, unicycles and building strange contraptions endearing, but I'm not sure that's really how it come across.

I am giving this book four stars for the biographical side, which works very well, but there are some issues. One is hyperbole - there is no doubt that Shannon was a genius and made a huge contribution to our understanding of information, but we really don't need to be told how incredible he was quite as often as this book does. At one point he is compared with Einstein - with Einstein arguably coming across as the less significant of the two - this seems to miss that part of Einstein's genius was the breadth of his work from statistical mechanics through relativity to quantum physics. While Shannon's personal interests were broad, his important work lacked that range.

The bigger issue was that I had hoped for a scientific biography, but I only really got a biography with a bit of science thrown in. The coverage of Shannon's information theory was (ironically) rarely very informative. I would have loved to have had the same level of exploration of the theory as we get of the person - but it's just not there. Of course, the theory isn't ignored, with a few pages given to each of the two big breakthroughs - but there could have been a whole lot more to make what can be a difficult concept more accessible.

I ought to stress that using the term hyperbole should not in any sense reduce the importance of Shannon's work. Hearing of Shannon's initial inspiration that logic and electrical circuitry were equivalent comes across rather like Darwin (and Wallace)'s inspiration on evolution by natural selection. It appears blindingly obvious, once you are told about it, but it took a long time for anyone to do so - and it's hugely important. Shannon's second big step, which provides a generalised model for information transmission with noise and makes the whole understanding of information communication mathematical was inspirational and up there with Turing's universal computer. What's more, it has applications well outside the IT world in the way it provides a link between information and entropy. If there were a maths Nobel prize, as Soni and Goodman suggest, Shannon definitely should have won one.

This is a man we needed to find out more about - and we certainly do. I just wish there had been more detail of the science in there too.

Hardback:  

Audio CD:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

Popular posts from this blog

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...

Should we question science?

I was surprised recently by something Simon Singh put on X about Sabine Hossenfelder. I have huge admiration for Simon, but I also have a lot of respect for Sabine. She has written two excellent books and has been helpful to me with a number of physics queries - she also had a really interesting blog, and has now become particularly successful with her science videos. This is where I'm afraid she lost me as audience, as I find video a very unsatisfactory medium to take in information - but I know it has mass appeal. This meant I was concerned by Simon's tweet (or whatever we are supposed to call posts on X) saying 'The Problem With Sabine Hossenfelder: if you are a fan of SH... then this is worth watching.' He was referencing a video from 'Professor Dave Explains' - I'm not familiar with Professor Dave (aka Dave Farina, who apparently isn't a professor, which is perhaps a bit unfortunate for someone calling out fakes), but his videos are popular and he...

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on...