Skip to main content

Four Way Interview - Hector Levesque

Hector Levesque is Professor Emeritus in the Department of Computer Science at the University of Toronto. He worked in the area of knowledge representation and reasoning in artificial intelligence. He is the co-author of a graduate textbook and co-founder of a conference in this area. He received the Computers and Thought Award in 1985 near the start of his career, and the Research Excellence Award in 2013 near the end, both from IJCAI (the International Joint Conferences on Artificial Intelligence). His latest title is Common Sense, The Turing Test, and the Quest for Real AI.

Why computer science?

Computer science is not really the science of computers, but the science of computation, a certain kind of information processing, with only a marginal connection to electronics. (I prefer the term used in French and other languages, informatics, but it never really caught on in North America.) Information is somewhat like gravity: once you are made aware of it, you realize that it is everywhere. You certainly cannot have a Theory of Everything without a clear understanding of the role of information. 

Why this book?

AI is the part of computer science concerned with the use of information in the sort of intelligent behaviour exhibited by people. While there is an incredible amount of buzz (and money) surrounding AI technology these days, it is mostly concerned with what can be learned by training on massive amounts of data. My book makes the case that this is an overly narrow view of intelligence, that what people are able to do, and what early AI researchers first proposed to study, goes well beyond this.

What's next?

I have a technical monograph with Gerhard Lakemeyer published in 2000 by MIT Press on the logic of knowledge bases, that is, on the relationship between large-scale symbolic representations and abstract states of knowledge. We are working on a new edition that would incorporate some of what we have learned about knowledge and knowledge bases since then. 

What's exciting you at the moment?

For me, the most exciting work in AI these days, at least in the theoretical part of AI, concerns the general mathematical and computational integration of logical and probabilistic reasoning seen, for example, in the work of Vaishak Belle. It's pretty clear to all but diehards that both types of knowledge will be needed, but previous solutions have been somewhat ad hoc and required giving up something out of one or the other.

Comments

Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…