Skip to main content

Common Sense, The Turing Test and the Quest for Real AI - Hector Levesque *****

It was fascinating to read this book immediately after Ed Finn's What Algorithms Want. They are both by academics on aspects of artificial intelligence (AI) - but where reading Finn's book is like wading through intellectual treacle, this is a delight. It is short, to the point, beautifully clear and provides just as much in the way of insights without any of the mental anguish.

The topic here is the nature of artificial intelligence, why the current dominant approach of adaptive machine learning can never deliver true AI and what the potential consequences are of thinking that learning from big data is sufficient to truly act in a smart fashion.

As Hector Levesque points out, machine learning is great at handling everyday non-exceptional circumstances - but falls down horribly when having to deal with the 'long tail', where there won't be much past data to learn from. For example (my examples, not his), a self-driving car might cope wonderfully with typical traffic and roads, but get into a serious mess if a deer tries to cross the motorway in front of it, or should the car encounter Swindon's Magic Roundabout.

There is so much here to love. Although the book is compact (and rather expensive for its size), each chapter delivers excellent considerations. Apart from the different kinds of AI (I love that knowledge-based AI has the acronym of GOFAI for 'good old-fashioned AI'), this takes us into considerations of how the brain works, the difference between real and fake intelligence, learning and experience, symbols and symbol processing and far more. Just to give one small example of something that intrigued me, Levesque gives the example of a very simple computer program that generates quite a complex outcome. He then envisages taking the kind of approaches we use to try to understand human intelligence - both psychological and physiological - showing how doing the same thing with this far simpler computer equivalent would fail to uncover what was happening behind the outputs.

For too long, those of us who take an interest in AI have been told that the 'old-fashioned' knowledge-based approach was a dead end, while the modern adaptive machine learning approach, which is the way that, for instance, programs like Siri and Alexa appear to understand English, is the way forward. But as the self-driving car example showed above, anything providing true AI has to be reliable and predictable to be able to cope with odd and relatively unlikely circumstances - because while any individual unlikely occurrence will probably never happen, the chances are that something unlikely will come along. And when it does, it takes knowledge to select the most appropriate action.

Highly recommended.

Hardback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

The Infinite Alphabet - Cesar Hidalgo ****

Although taking a very new approach, this book by a physicist working in economics made me nostalgic for the business books of the 1980s. More on why in a moment, but Cesar Hidalgo sets out to explain how it is knowledge - how it is developed, how it is managed and forgotten - that makes the difference between success and failure. When I worked for a corporate in the 1980s I was very taken with Tom Peters' business books such of In Search of Excellence (with Robert Waterman), which described what made it possible for some companies to thrive and become huge while others failed. (It's interesting to look back to see a balance amongst the companies Peters thought were excellent, with successes such as Walmart and Intel, and failures such as Wang and Kodak.) In a similar way, Hidalgo uses case studies of successes and failures for both businesses and countries in making effective use of knowledge to drive economic success. When I read a Tom Peters book I was inspired and fired up...

The War on Science - Lawrence Krauss (Ed.) ****

At first glance this might appear to be yet another book on how to deal with climate change deniers and the like, such as How to Talk to a Science Denier.   It is, however, a much more significant book because it addresses the way that universities, government and pressure groups have attempted to undermine the scientific process. Conceptually I would give it five stars, but it's quite heavy going because it's a collection of around 18 essays by different academics, with many going over the same ground, so there is a lot of repetition. Even so, it's an important book. There are a few well-known names here - editor Lawrence Krauss, Richard Dawkins and Steven Pinker - but also a range of scientists (with a few philosophers) explaining how science is being damaged in academia by unscientific ideas. Many of the issues apply to other disciplines as well, but this is specifically about the impact on science, and particularly important there because of the damage it has been doing...