Skip to main content

Common Sense, The Turing Test and the Quest for Real AI - Hector Levesque *****

It was fascinating to read this book immediately after Ed Finn's What Algorithms Want. They are both by academics on aspects of artificial intelligence (AI) - but where reading Finn's book is like wading through intellectual treacle, this is a delight. It is short, to the point, beautifully clear and provides just as much in the way of insights without any of the mental anguish.

The topic here is the nature of artificial intelligence, why the current dominant approach of adaptive machine learning can never deliver true AI and what the potential consequences are of thinking that learning from big data is sufficient to truly act in a smart fashion.

As Hector Levesque points out, machine learning is great at handling everyday non-exceptional circumstances - but falls down horribly when having to deal with the 'long tail', where there won't be much past data to learn from. For example (my examples, not his), a self-driving car might cope wonderfully with typical traffic and roads, but get into a serious mess if a deer tries to cross the motorway in front of it, or should the car encounter Swindon's Magic Roundabout.

There is so much here to love. Although the book is compact (and rather expensive for its size), each chapter delivers excellent considerations. Apart from the different kinds of AI (I love that knowledge-based AI has the acronym of GOFAI for 'good old-fashioned AI'), this takes us into considerations of how the brain works, the difference between real and fake intelligence, learning and experience, symbols and symbol processing and far more. Just to give one small example of something that intrigued me, Levesque gives the example of a very simple computer program that generates quite a complex outcome. He then envisages taking the kind of approaches we use to try to understand human intelligence - both psychological and physiological - showing how doing the same thing with this far simpler computer equivalent would fail to uncover what was happening behind the outputs.

For too long, those of us who take an interest in AI have been told that the 'old-fashioned' knowledge-based approach was a dead end, while the modern adaptive machine learning approach, which is the way that, for instance, programs like Siri and Alexa appear to understand English, is the way forward. But as the self-driving car example showed above, anything providing true AI has to be reliable and predictable to be able to cope with odd and relatively unlikely circumstances - because while any individual unlikely occurrence will probably never happen, the chances are that something unlikely will come along. And when it does, it takes knowledge to select the most appropriate action.

Highly recommended.

Hardback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...