Skip to main content

Science: a history in 100 experiments - John and Mary Gribbin ***

What you might call list books - 100 best this, 50 ideas on that - are not my favourite reading (in my experience they tend to be things publishers like because they get lots of translations), but anything John and Mary Gribbin are involved in is bound to have good written content, and that is true here.

Unlike some such books, where the illustrations dominate, here there is a good mix between the text, which isn't constrained to be an exact two-page spread, and the images. Though the text is never overwhelmed, those images are often excellent and this is a classy enough production to have good quality colour photographs (though this is reflected in the price).

Along the way through our 100 experiments, we see some of the best of the best. (There are actually 101, explained as being like the US 'Physics 101' type courses, but more likely added afterwards to encompass the LIGO gravitational wave experiment.) It is remarkable to see both the crudeness of some early experiments that achieved so much, and the effort and thinking that has gone in to the ways that we have opened up knowledge on the universe, the Earth, biology, matter and more. The Gribbins aren't unnecessarily fussy about what counts as an experiment, which is excellent, so include, for example, the invention of the steam engine and the fascinating folly that was the almost unusable giant telescope, the Leviathan of Parsonstown.

We discover the way that very small ideas can spark a wider scientific endeavour - for instance KekulĂ©'s self-eating snake dream, leading to an understanding of the benzene ring, so important to organic chemistry. And how sometimes it is the absence of something that makes the difference, such as when the ability to create a near-vacuum led to more understanding of subatomic particles and the development of electronics. Usually in the history of science we see a neat (if humanly flawed) chronological procession. By taking us from Archimedes in his bath to the satellites mapping the cosmic microwave background radiation we get a better understanding of the breadth of scientific endeavour.

Infrequently, the need to condense an experiment and its implications into a brief article can result in compaction that comes close to being misleading. For instance, in Newton's famous experiments on light we are told that in the second part of the experiment a second prism 'combined the seven colours back into a single spot of white light.' In reality, while Newton did use a second prism this way, he doesn't mention its effect on colour, only shape. His actual 'Experimentum Crucis' used two boards to separate off a small section of the spectrum and the second prism was used to show that different colours bent at different angles. Where Newton did actually make something of recombining the colours, he used a lens, rather than a prism. Similarly the entry on masers and lasers only details the maser work, not even naming the person who created the (far more useful) first laser or the person who had the patent on it.

Even so, the vast majority of the entries remain informative and concise. I'm only left with my usual bafflement with this kind of book as to what they are for. Only scientific stamp collectors are going to want to read through end to end (I admit to skimming through and dipping in to read the articles that caught my eye for various reasons). There's not the satisfaction of a narrative-based read that comes in a good popular science book. My suspicion is that apart from the translation opportunities, the main target may be libraries - the book is expensive for a personal buy, but I can imagine it being popular in both public and school libraries. So it remains part of a category I don't really understand as a reader... but it undoubtedly should win 'best in class'.

Hardback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Grace Lindsay - Four Way Interview

Grace Lindsay is a computational neuroscientist currently based at University College, London. She completed her PhD at the Centre for Theoretical Neuroscience at Columbia University, where her research focused on building mathematical models of how the brain controls its own sensory processing. Before that, she earned a bachelor’s degree in Neuroscience from the University of Pittsburgh and received a research fellowship to study at the Bernstein Center for Computational Neuroscience in Freiburg, Germany. She was awarded a Google PhD Fellowship in Computational Neuroscience in 2016 and has spoken at several international conferences. She is also the producer and co-host of Unsupervised Thinking , a podcast covering topics in neuroscience and artificial intelligence. Her first book is Models of the Mind . Why science? I started my undergraduate degree as a neuroscience and philosophy double major and I think what drew me to both topics was the idea that if we just think rigorously enou

A Citizen's Guide to Artificial Intelligence - John Zerilli et al ****

The cover of this book set off a couple of alarm bells. Not only does that 'Citizen's Guide' part of the title raise the spectre of a pompous book-length moan, the list of seven authors gives the feel of a thesis written by committee. It was a real pleasure, then, to discover that this is actually a very good book. I ought to say straight away what it isn't - despite that title, it isn't a book written in a style that's necessarily ideal for a general audience. Although the approach is often surprisingly warm and human, it is an academic piece of writing. As a result, in places it's a bit of a trudge to get through it. Despite this, though, the topic is important enough - and, to be fair, the way it is approached is good enough - that it deserves to be widely read. John Zerilli et al give an effective, very balanced exploration of artificial intelligence. Although not structured as such, it's a SWOT analysis, giving us the strengths, weaknesses, opportun

The Science of Can and Can't - Chiara Marletto *****

Without doubt, Chiara Marletto has achieved something remarkable here, though the nature of the topic does not make for an easy read. The book is an attempt to popularise constructor theory - a very different approach to physics, which Oxford quantum physicist David Deutsch has developed with Marletto. Somewhat oddly, the book doesn't use the term constructor theory, but rather the distinctly clumsier 'science of can and can't'. The idea is that physics is formulated in a way that is inherently limited because it depends on using mechanisms that follows the progress of dynamic systems using the laws of physics. This method isn't applicable in circumstances where either something may happen, but won't necessarily, nor where something isn't allowed to happen (hence the science of can and can't, which probably should be the science of could and can't if we are going to be picky). Deutsch and Marletto have proposed a way of using 'counterfactuals'