Skip to main content

The Invention of Science - David Wootton *****

This is no lightweight book - both literally and metaphorically. It packs in nearly 600 pages of decidedly small print, and manages to assign about 10 per cent of these simply to deciding what is meant by a 'scientific revolution' (the subtitle is 'a new history of the scientific revolution'). While warning of the importance of being aware of the change in meaning of some terms, the author successfully demolishes the arguments of those who argue that terms like science, scientist and revolution can't be applied to the seventeenth century because they're anachronistic. (He doesn't say it, but this is a bit like saying you shouldn't call a dinosaur a dinosaur because the word wasn't in use when they were around.)
What's also very apparent in a section on history and philosophy of science is why so many scientists are dubious of philosophers and historians of science. When an adult can seriously suggest that we can't say that current science is better than that of the Romans - all we can say, suggest these philosophers and historians of science, is that our science is different - it makes it very clear that some academics have spent far too much time in ivory towers examining their philosophical navels and really haven't got a clue about the real world.
We then get into the main content of the gradual process of science, in the current sense of the word, coming into being. It's certainly interesting in a dry way to see this analytically dissected, though the slightly tedious nature of the exposition makes it clear why popular science has to simplify and concentrate on the narrative if readers are to be kept on track. I appreciate that an academic like David Wootton wants to ensure that every i is dotted and t crossed, but I think that all the arguments of this book could have been made in half the length by cutting back on some of the detail and repetition.
This book, then, is not popular science in the usual sense, but neither is it a textbook. If you are prepared to put the effort in, you will receive huge insights into what lies beneath: one view of the true history of science. That's why the book gets 5 stars. I've learned more about the history of science from this one book than any other five I can think of that I have read in the past. I have to emphasise that 'one view' part, though. History is - well, not an exact science. As far as I can see (I'm not equipped to criticise the content) this is a superbly well researched piece of scientific history, but in the end, the conclusions drawn are down to Wootton and he enjoys making it clear where he is strongly contradicting other historians of science.
There's a huge amount to appreciate here. Wootton convincingly demolishes Kuhn's idea that scientific revolutions require heavy disagreements among scientists, showing how exposure to experience (often thanks to new technology, such as the telescope) can swing the argument surprisingly painlessly. And he shows what a remarkable influence words have on the development of science (music to the ear of a writer). Perhaps most remarkable of all is Wootton's careful, very detailed exposition of the idea that the real trigger for 'modern' scientific thought was Columbus's discovery of America, which demolished the existing model of the Earth and made it possible to see how experience can triumph over the philosophical quagmire of authority.
If you've a fair amount of time to spare and really want to dig into the way that the scientific revolution came about, I would heartily recommend giving this title a try.


Paperback (US is Hardback):  

Kindle 
Review by Brian Clegg

Comments

Popular posts from this blog

Beyond Weird - Philip Ball *****

It would be easy to think 'Surely we don't need another book on quantum physics.' There are loads of them. Anyone should be happy with The Quantum Age on applications and the basics, Cracking Quantum Physics for an illustrated introduction or In Search of Schrödinger's Cat for classic history of science coverage. Don't be fooled, though - because in Beyond Weird, Philip Ball has done something rare in my experience until Quantum Sense and Nonsense came along. It makes an attempt not to describe quantum physics, but to explain why it is the way it is.

Historically this has rarely happened. It's true that physicists have come up with various interpretations of quantum physics, but these are designed as technical mechanisms to bridge the gap between theory and the world as we see it, rather than explanations that would make sense to the ordinary reader.

Ball does not ignore the interpretations, though he clearly isn't happy with any of them. He seems to come clo…

Jim Baggott - Four Way Interview

Jim Baggott is a freelance science writer. He trained as a scientist, completing a doctorate in physical chemistry at Oxford in the early 80s, before embarking on post-doctoral research studies at Oxford and at Stanford University in California. He gave up a tenured lectureship at the University of Reading after five years in order to gain experience in the commercial world. He worked for Shell International Petroleum for 11 years before leaving to establish his own business consultancy and training practice. He writes about science, science history and philosophy in what spare time he can find. His books include Atomic: The First War of Physics and the Secret History of the Atom Bomb (2009), Higgs: The Invention and Discovery of the ‘God Particle’ (2012), Mass: The Quest to Understand Matter from Greek Atoms to Quantum Fields (2017), and, most recently, Quantum Space: Loop Quantum Gravity and the Search for the Structure of Space, Time, and the Universe (2018). For more info see: www…

Quantum Space: Jim Baggott *****

There's no doubt that Jim Baggott is one of the best popular science writers currently active. He specialises in taking really difficult topics and giving a more in-depth look at them than most of his peers. The majority of the time he achieves with a fluid writing style that remains easily readable, though inevitably there are some aspects that are difficult for the readers to get their heads around - and this is certainly true of his latest title Quantum Space, which takes on loop quantum gravity.

As Baggott points out, you could easily think that string theory was the only game in town when it comes to the ultimate challenge in physics, finding a way to unify the currently incompatible general theory of relativity and quantum theory. Between them, these two behemoths of twentieth century physics underlie the vast bulk of physics very well - but they simply can't be put together. String theory (and its big brother M-theory, which as Baggott points out, is not actually a the…