Skip to main content

Eyes on the Sky - Francis Graham-Smith ***

There are broadly two types of popular science book - those that pretty well anyone would find interesting, and those where you have to be a bit of an enthusiast to enjoy it. Eyes on the Sky falls into the second category - there's nothing wrong with this, but it's just a rather different kind of book, one that concentrates on piling in the facts and not worrying too much about the narrative.

What we have here is an exploration of the uses of telescopes in astronomy, from Galileo through to some instruments that are still being built. The historical side is dealt with relatively quickly - we're on to the big telescopes of my youth by page 17 out of 230. The big era begins by inevitably highlighting what we always use to call in our ignorance the Mount Palomar telescope, but is now primly insistent in its old age on being the Hale 200 inch.

From there we go on to the bewildering array of modern telescopes, land and space based, covering every imaginable bit of the electromagnetic spectrum. (The book we written just too late to catch recent speculation that gravity waves might become the next generation of novel telescopy.) If, like me, you fall into the slightly nerdy second category, there are two aspects that are fascinating here - one is the sheer range of equipment out there. It's not just the big names like Hubble and Keck, but tens of telescopes you may never have heard of. The other bit that's even more interesting is finding out more about how these telescopes actually work. We're all pretty familiar with optical telescopes and radio telescopes (and good old Jodrell Bank, where the author worked, gets plenty of mentions), but may not be aware how an infra-red or X-ray telescope functions - yet these are now essential workhorses. With X-rays, and gamma rays for instance, you can't use a lens or a traditional mirror, and the methods employed are quite remarkable, especially the coded mask approach used, for example, in the Burst Alert Telescope that was mounted on the Swift satellite in use since 2005 (no, I hadn't heard of it, either). Used to spot gamma ray bursts, this looks like a vast jigsaw puzzle with about a quarter of the pieces missing.

Similarly interesting is the way that modern telescopes, particularly radio telescopes, often use a pair or an array of telescopes to either provide interference patterns or to simulate a vast telescope with a much wider reflector than could ever be built. I was aware of the concept, but the scale of something like the Square Kilometre Array is still remarkable.

Although the historical context was limited, it mostly seemed reasonable, though I'm not entirely sure of the statement that the telescope used by Penzias and Wilson to discover the cosmic microwave background radiation was built by Bell Labs to measure the radio brightness of the sky, as most sources suggest it was originally constructed for communications satellite/balloon experiments.

If you like to build your background knowledge and have an interest in how astronomy is undertaken, rather than just the results, this is the book for you. You probably won't consider this much of a holiday read, but if, like me, you have an interest in astronomy (and probably dabbled with small telescopes in your teens) it will be irresistible.


Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Models of the Mind - Grace Lindsay *****

This is a remarkable book. When Ernest Rutherford made his infamous remark about science being either physics or stamp collecting, it was, of course, an exaggeration. Yet it was based on a point - biology in particular was primarily about collecting information on what happened rather than explaining at a fundamental level why it happened. This book shows how biologists, in collaboration with physicists, mathematicians and computer scientists, have moved on the science of the brain to model some of its underlying mechanisms. Grace Lindsay is careful to emphasise the very real difference between physical and biological problems. Most systems studied by physics are a lot simpler than biological systems, making it easier to make effective mathematical and computational models. But despite this, huge progress has been made drawing on tools and techniques developed for physics and computing to get a better picture of the mechanisms of the brain. In the book we see this from two directions

The Ten Equations that Rule the World - David Sumpter ****

David Sumpter makes it clear in this book that a couple of handfuls of equations have a huge influence on our everyday lives. I needed an equation too to give this book a star rating - I’ve never had one where there was such a divergence of feeling about it. I wanted to give it five stars for the exposition of the power and importance of these equations and just two stars for an aspect of the way that Sumpter did it. The fact that the outcome of applying my star balancing equation was four stars emphasises how good the content is. What we have here is ten key equations from applied mathematics. (Strictly, nine, as the tenth isn’t really an equation, it’s the programmer’s favourite ‘If… then…’ - though as a programmer I was always more an ‘If… then… else…’ fan.) Those equations range from the magnificent one behind Bayesian statistics and the predictive power of logistic regression to the method of determining confidence intervals and the kind of influencer matrix so beloved of social m

How to Read Numbers - Tom Chivers and David Chivers *****

This is one of my favourite kinds of book - it takes on the way statistics are presented to us, points out flaws and pitfalls, and gives clear guidance on how to do it better. The Chivers brothers' book isn't particularly new in doing this - for example, Michael Blastland and Andrew Dilnot did something similar in the excellent 2007 title The Tiger that Isn't - but it's good to have an up-to-date take on the subject, and How to Read Numbers gives us both some excellent new examples and highlights errors that are more common now. The relatively slim title (and that's a good thing) takes the reader through a whole host of things that can go wrong. So, for example, they explore the dangers of anecdotal evidence, tell of study samples that are too small or badly selected, explore the easily misunderstood meaning of 'statistical significance', consider confounders, effect size, absolute versus relative risk, rankings, cherry picking and more. This is all done i