Skip to main content

Fun with the Reverend Bayes

A recent review of Bayes' Rule by James V. Stone for review, has reminded me of the delightful case of the mathematician's coloured balls. (Mathematicians often have cases of coloured balls. Don't ask me why.)

This is a thought experiment that helps illustrate why we have problems dealing with uncertainty and probability.

Imagine I've got a jar with 50 white balls and 50 black balls in it. I take out a ball but don't look at it. What's the chance that this ball is black?

I hope you said 50% or 50:50 or 1/2 or 0.5 - all ways of saying that it has equal chances of being either white or black. With no further information that's the only sensible assumption.

Now keep that ball to one side, still not looking at it. You pull out another ball and you do look at this one. (Mathematicians know how to have a good time.) It's white.

Now what's the chance that the first ball was black?

You might be very sensibly drawn to suggest that it's still 50:50. After all, how could the probability change just because I took another ball out afterwards? But the branch of probability and statistics known as Bayesian tells us that probabilities are not set in stone or absolute - they are only as good as the information we have, and gaining extra information can change the probability.

Initially you had no information about the balls other than that there were 50 of each colour in the pot. Now, however, you also know that a ball drawn from the remainder was white. If that first ball had been black, you would be slightly more likely to draw a white ball next time. So drawing a white makes it's slightly more likely that the first ball was black than it was white - you've got extra information. Not a lot of information, it's true. Yet it does shift the probability, even though the information comes in after the first ball was drawn.

If you find that hard to believe, imagine taking the example to the extreme. I've got a similar pot with just two balls in, one black, one white. I draw one out but don't look at it. What's the chance that this ball is black? Again it's 50%. Now lets take another ball out of the pot and look at. It's white. Do you still think that looking at another ball doesn't change the chances of the other ball being black? If so let's place a bet - because I now know that the other ball is definitely black.

So even though it appears that there's a 0.5 chance of the ball being black initially, what is really the case is that 0.5 is our best bet given the information we had. It's not an absolute fact, it's our best guess given what we know. In reality the ball was either definitely white or definitely black, not it some quantum indeterminate state. But we didn't know which it was, so that 0.5 gave us a best guess.

One final example to show how information can change apparently fixed probabilities.

We'll go back to the first example to show another way that information can change probability. Again I've got a pot, then with 50 black and 50 white balls. I draw one out. What's the probability it's black? You very reasonably say 50%.  So far this is exactly the same situation as the first time round.

I, however, have extra information. I now share that information with you - and you change your mind and say that the probability is 100% black, even though nothing has changed about the actual pot or ball drawn. Why? Because I have told you that all the balls at the bottom of the pot are white and all the balls at the top are black. My extra information changes the probabilities.

Comments

Popular posts from this blog

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...

The Bright Side - Sumit Paul-Choudhury ***

When I first saw The Bright Side (the subtitle doesn't help), I was worried it was a self-help manual, a format that rarely contains good science. In reality, Sumit Paul-Choudhury does not give us a checklist for becoming an optimist or anything similar - and there is a fair amount of science content. But to be honest, I didn't get on very well with this book. What Paul-Choudhury sets out to do is to both identify what optimism is and to assess its place in a world where we are beset with big problems such as climate change (which he goes into in some detail) that some activists position as an existential threat. This is all done in a friendly, approachable fashion. In that sense it's a classic pop-psychology title. For me, Paul-Choudhury certainly has it right about the lack of logic of extreme doom-mongers, such as Extinction Rebellion and teenage climate protestors, and his assessment of the nature of optimism seems very reasonable, if presented at a fairly overview leve...

Phenomena - Camille Juzeau and the Shelf Studio ****

I am always a bit suspicious of books that are highly illustrated or claim to cover 'almost everything' - and in one sense this is clearly hyperbole. But I enjoyed Phenomena far more than I thought I would. The idea is to cover 125 topics with infographics. On the internet these tend to be long pages with lots of numbers and supposedly interesting factoids. Thankfully, here the term is used in a more eclectic fashion. Each topic gets a large (circa A4) page (a few get two) with a couple of paragraphs of text and a chunky graphic. Sometimes these do consist of many small parts - for example 'the limits of the human body' features nine graphs - three on sporting achievements, three on biometrics (e.g. height by date of birth) and three rather random items (GNP per person, agricultural yields of various crops and consumption of coal). Others have a single illustration, such as a map of the sewers of Paris. (Because, why wouldn't you want to see that?) Just those two s...