Skip to main content

Bayes' Rule - James V. Stone ***

Of all the areas of mathematics, probability is arguably the most intriguing to the non-mathematician, and this is particularly the case with Bayesian analysis, which can be delightfully counter-intuitive. However, the more complex aspects can be tricky to get your head around, so I was delighted to have the chance to read this book, subtitled 'a tutorial introduction to Bayesian analysis.'

I need to say straight away that this isn't really a popular science title, and the author is very clear about this - it's a kind of textbook lite - but if you have found out a bit about Bayes this book is an opportunity to dive into it a little deeper without taking on the full rigour of a textbook approach. Why should you care? Bayes gives us a mechanism that enables us to do things like go from a known piece of information like 'what's the probability of a symptom given a disease' to estimate a much more interesting unknown like 'what's the probability of the disease given a symptom' - an extremely powerful mechanism.

James Stone does his best to accommodate us ordinary folk. The book opens well, apart from a bizarrely heavy smattering of references on page 1, with a gentle introduction, and keeps the mood light after the classic disease application by looking for a mechanism of determining whether some said 'four candles' or 'fork handles' in the Two Ronnies style. If you are prepared to make an effort, for most of us probably a considerable effort, you will go on to pick up a lot more about using Bayes than you already knew (if you aren't a mathematician).

It is rather unfortunate for the general reader, though, that the book obeys the rules of the textbook rather than a popular science exposition. This comes across in unnecessary use of terminology - defining things that, frankly we don't need to know - and in rapidly moving to using symbols in equations, where they are rarely necessary at this level and all they do is put readers off. I suspect the moment that Stone introduced the Greek letter theta (θ) he made things ten times harder - unless you do this kind of thing every day, suddenly the text gets far less readable - the eyes bounce off it.

Even though I enjoyed the fork handles, I also thought the choice of examples could have been better. It was okay to use disease and symptom once, as it's an important application, but most of us rarely have to deal with this kind of situation and it would have been better to use more personally relevant applications. It was also unfortunate that when explaining random variables Stone chose a coin which is 90% likely to be heads and 10% likely to be tails - there is too much baggage attached to coins being 50:50. It would have been less confusing to have something that we might encounter (a scratch card, say) that is likely to be one value 90% of the time and the other 10%.

If you make it to the final chapter you are rewarded with a very readable, if too brief, introduction to the distinction between Bayesian and frequentist approaches, and just a touch of the mind bending capabilities of Bayesian thinking. With a bit more of this contextual material throughout the experience would have been gentler and more enjoyable - but even as a closer to the book it provides interesting material.

Don't expect, then that this book will make fun, popular science bedtime reading. It's not that kind of exercise. However, if you are prepared to overcome the onslaught of thetas and don't mind reading some statements several times to get what's being said, it is an excellent way to expand a vague understanding into a more sound knowledge of the basic mechanics of Bayesian analysis.


Paperback 
Using these links earns us commission at no cost to you

Buy direct from the author: Click here
See one of the mind-bending implications of Bayes' rule in our feature.
Review by Brian Clegg

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...