Skip to main content

Bayes' Rule - James V. Stone ***

Of all the areas of mathematics, probability is arguably the most intriguing to the non-mathematician, and this is particularly the case with Bayesian analysis, which can be delightfully counter-intuitive. However, the more complex aspects can be tricky to get your head around, so I was delighted to have the chance to read this book, subtitled 'a tutorial introduction to Bayesian analysis.'

I need to say straight away that this isn't really a popular science title, and the author is very clear about this - it's a kind of textbook lite - but if you have found out a bit about Bayes this book is an opportunity to dive into it a little deeper without taking on the full rigour of a textbook approach. Why should you care? Bayes gives us a mechanism that enables us to do things like go from a known piece of information like 'what's the probability of a symptom given a disease' to estimate a much more interesting unknown like 'what's the probability of the disease given a symptom' - an extremely powerful mechanism.

James Stone does his best to accommodate us ordinary folk. The book opens well, apart from a bizarrely heavy smattering of references on page 1, with a gentle introduction, and keeps the mood light after the classic disease application by looking for a mechanism of determining whether some said 'four candles' or 'fork handles' in the Two Ronnies style. If you are prepared to make an effort, for most of us probably a considerable effort, you will go on to pick up a lot more about using Bayes than you already knew (if you aren't a mathematician).

It is rather unfortunate for the general reader, though, that the book obeys the rules of the textbook rather than a popular science exposition. This comes across in unnecessary use of terminology - defining things that, frankly we don't need to know - and in rapidly moving to using symbols in equations, where they are rarely necessary at this level and all they do is put readers off. I suspect the moment that Stone introduced the Greek letter theta (θ) he made things ten times harder - unless you do this kind of thing every day, suddenly the text gets far less readable - the eyes bounce off it.

Even though I enjoyed the fork handles, I also thought the choice of examples could have been better. It was okay to use disease and symptom once, as it's an important application, but most of us rarely have to deal with this kind of situation and it would have been better to use more personally relevant applications. It was also unfortunate that when explaining random variables Stone chose a coin which is 90% likely to be heads and 10% likely to be tails - there is too much baggage attached to coins being 50:50. It would have been less confusing to have something that we might encounter (a scratch card, say) that is likely to be one value 90% of the time and the other 10%.

If you make it to the final chapter you are rewarded with a very readable, if too brief, introduction to the distinction between Bayesian and frequentist approaches, and just a touch of the mind bending capabilities of Bayesian thinking. With a bit more of this contextual material throughout the experience would have been gentler and more enjoyable - but even as a closer to the book it provides interesting material.

Don't expect, then that this book will make fun, popular science bedtime reading. It's not that kind of exercise. However, if you are prepared to overcome the onslaught of thetas and don't mind reading some statements several times to get what's being said, it is an excellent way to expand a vague understanding into a more sound knowledge of the basic mechanics of Bayesian analysis.


Paperback 
Using these links earns us commission at no cost to you

Buy direct from the author: Click here
See one of the mind-bending implications of Bayes' rule in our feature.
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re