Skip to main content

Black Holes: a very short introduction - Katherine Blundell ***

Black holes have to be amongst the most fascinating phenomena of astronomy/cosmology and as such make a perfect topic for a new addition to OUP's vast collection of pocket guides, the 'very short introduction' books. I read my copy on a couple of 45 minute train journeys - it's long enough to give a good grounding in the basics of black holes, without being heavy or over-technical.

We are taken on a tour that includes the early black hole-like concepts, and the nature of the real thing, what would happen if you fell into one, the black hole's thermodynamics (which is more interesting than it sounds), how we discover things like their mass and spin rate, how they grow (and shrink) and plenty more. Considering this is just 93 pages, Katherine Blundell packs in the good stuff.

The writing style is generally approachable, and this is a popular topic, so I was all set to give the book four stars, but there were sufficient issues to pull it back down. The first was the errors. Almost every popular science book has at least one, but there seemed rather more than usual. The expected one, which I couldn't blame Blundell for, was in the description of Hawking radiation, which doesn't make a lot of sense. The reason I don't blame the author is that almost all popular science descriptions of Hawking radiation don't make sense, because all of us, except working physicists, assumed Hawking described it correctly in his book. Unfortunately he didn't - in attempting to simplify a messy theoretical concept, he came up with an 'explanation' that doesn't hold water, which was then, unsurprisingly, repeated elsewhere over an over. It's unfortunate timing that there has been a lot of publicity this year for this problem. 

Less forgivable were a couple of oddities. The Andromeda galaxy is described as being 6 million light years away. It is actually around 2.5 million light years. While you might argue this is order of magnitude correct, even the worst taxi driver wouldn't take you on a route that was 3.5 million light years too far. We are also told that white dwarf stars are cold. This seems to suggest a lack of understanding of stars - you can't radiate blue-white light and be cold. What might have been intended is that over time white dwarfs do cool in the way that ordinary stars don't, because there's no hydrogen fusion to heat them, but it's a very slow process and observable white dwarfs tend to be pretty toasty.

Finally, there's the matter of omissions. Most of the work on black holes is theory rather than observation, and there's a rich vein in the theory around, for instance, the concept of firewalls - whether an observer passing into a black hole would not notice the event horizon or would burn up, as some theories suggest. Other theories put the entire universe in a black hole, making the possibility of a holographic reality. It's a shame this fun speculation isn't there, both to see and be analysed, especially as so much about black holes is based on theory rather than observed data.

Not a bad book, by any means, but enough issues to raise a small flag.


Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on