Skip to main content

Black Holes: a very short introduction - Katherine Blundell ***

Black holes have to be amongst the most fascinating phenomena of astronomy/cosmology and as such make a perfect topic for a new addition to OUP's vast collection of pocket guides, the 'very short introduction' books. I read my copy on a couple of 45 minute train journeys - it's long enough to give a good grounding in the basics of black holes, without being heavy or over-technical.

We are taken on a tour that includes the early black hole-like concepts, and the nature of the real thing, what would happen if you fell into one, the black hole's thermodynamics (which is more interesting than it sounds), how we discover things like their mass and spin rate, how they grow (and shrink) and plenty more. Considering this is just 93 pages, Katherine Blundell packs in the good stuff.

The writing style is generally approachable, and this is a popular topic, so I was all set to give the book four stars, but there were sufficient issues to pull it back down. The first was the errors. Almost every popular science book has at least one, but there seemed rather more than usual. The expected one, which I couldn't blame Blundell for, was in the description of Hawking radiation, which doesn't make a lot of sense. The reason I don't blame the author is that almost all popular science descriptions of Hawking radiation don't make sense, because all of us, except working physicists, assumed Hawking described it correctly in his book. Unfortunately he didn't - in attempting to simplify a messy theoretical concept, he came up with an 'explanation' that doesn't hold water, which was then, unsurprisingly, repeated elsewhere over an over. It's unfortunate timing that there has been a lot of publicity this year for this problem. 

Less forgivable were a couple of oddities. The Andromeda galaxy is described as being 6 million light years away. It is actually around 2.5 million light years. While you might argue this is order of magnitude correct, even the worst taxi driver wouldn't take you on a route that was 3.5 million light years too far. We are also told that white dwarf stars are cold. This seems to suggest a lack of understanding of stars - you can't radiate blue-white light and be cold. What might have been intended is that over time white dwarfs do cool in the way that ordinary stars don't, because there's no hydrogen fusion to heat them, but it's a very slow process and observable white dwarfs tend to be pretty toasty.

Finally, there's the matter of omissions. Most of the work on black holes is theory rather than observation, and there's a rich vein in the theory around, for instance, the concept of firewalls - whether an observer passing into a black hole would not notice the event horizon or would burn up, as some theories suggest. Other theories put the entire universe in a black hole, making the possibility of a holographic reality. It's a shame this fun speculation isn't there, both to see and be analysed, especially as so much about black holes is based on theory rather than observed data.

Not a bad book, by any means, but enough issues to raise a small flag.


Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

It's On You - Nick Chater and George Loewenstein *****

Going on the cover you might think this was a political polemic - and admittedly there's an element of that - but the reason it's so good is quite different. It shows how behavioural economics and social psychology have led us astray by putting the focus way too much on individuals. A particular target is the concept of nudges which (as described in Brainjacking ) have been hugely over-rated. But overall the key problem ties to another psychological concept: framing. Huge kudos to both Nick Chater and George Loewenstein - a behavioural scientist and an economics and psychology professor - for having the guts to take on the flaws in their own earlier work and that of colleagues, because they make clear just how limited and potentially dangerous is the belief that individuals changing their behaviour can solve large-scale problems. The main thesis of the book is that there are two ways to approach the major problems we face - an 'i-frame' where we focus on the individual ...