Skip to main content

John Gribbin – Four Way Interview

John Gribbin is one of Britain’s foremost science writers. John gained a PhD from the Institute of Astronomy in Cambridge (then under the leadership of Fred Hoyle) before working as a science journalist for Nature and later New Scientist. He is the author of a number of bestselling popular science books, including In Search of Schrödinger’s Cat, In Search of the Multiverse, Science: A History and The Universe: A Biography. He is a Visiting Fellow at the University of Sussex and in 2000 was elected a Fellow of the Royal Society of Literature. His most recent book is Computing with Quantum Cats.
Why science?
From my earliest memories I have been interested in how things (things at large) work, and where it all comes from. I was specifically turned on to science by reading the Sf magazine Astounding (as it then was) from about the age of 8 or 9. Each issue included a “Science Fact” article. This led me to non-fiction by Asimov and Clarke. The rest is history.
Why this book?
Long-standing interest in quantum physics, merged with interest in the quantum group at Sussex University, leaders in the ion trap technology. Turing’s 100th birthday was the specific trigger.
What’s next?
Keeping it under my hat as not yet signed contracts.
What’s exciting you at the moment?
Quantum computing! This is not so obvious as it might seem, since usually by the time a book comes out I have moved on. But the field is developing faster than I can write about it. I’m also intrigued by hints of asymmetry in the cosmic background radiation, but this is very speculative as yet.

Comments

Popular posts from this blog

Grace Lindsay - Four Way Interview

Grace Lindsay is a computational neuroscientist currently based at University College, London. She completed her PhD at the Centre for Theoretical Neuroscience at Columbia University, where her research focused on building mathematical models of how the brain controls its own sensory processing. Before that, she earned a bachelor’s degree in Neuroscience from the University of Pittsburgh and received a research fellowship to study at the Bernstein Center for Computational Neuroscience in Freiburg, Germany. She was awarded a Google PhD Fellowship in Computational Neuroscience in 2016 and has spoken at several international conferences. She is also the producer and co-host of Unsupervised Thinking , a podcast covering topics in neuroscience and artificial intelligence. Her first book is Models of the Mind . Why science? I started my undergraduate degree as a neuroscience and philosophy double major and I think what drew me to both topics was the idea that if we just think rigorously enou

A Citizen's Guide to Artificial Intelligence - John Zerilli et al ****

The cover of this book set off a couple of alarm bells. Not only does that 'Citizen's Guide' part of the title raise the spectre of a pompous book-length moan, the list of seven authors gives the feel of a thesis written by committee. It was a real pleasure, then, to discover that this is actually a very good book. I ought to say straight away what it isn't - despite that title, it isn't a book written in a style that's necessarily ideal for a general audience. Although the approach is often surprisingly warm and human, it is an academic piece of writing. As a result, in places it's a bit of a trudge to get through it. Despite this, though, the topic is important enough - and, to be fair, the way it is approached is good enough - that it deserves to be widely read. John Zerilli et al give an effective, very balanced exploration of artificial intelligence. Although not structured as such, it's a SWOT analysis, giving us the strengths, weaknesses, opportun

The Science of Can and Can't - Chiara Marletto *****

Without doubt, Chiara Marletto has achieved something remarkable here, though the nature of the topic does not make for an easy read. The book is an attempt to popularise constructor theory - a very different approach to physics, which Oxford quantum physicist David Deutsch has developed with Marletto. Somewhat oddly, the book doesn't use the term constructor theory, but rather the distinctly clumsier 'science of can and can't'. The idea is that physics is formulated in a way that is inherently limited because it depends on using mechanisms that follows the progress of dynamic systems using the laws of physics. This method isn't applicable in circumstances where either something may happen, but won't necessarily, nor where something isn't allowed to happen (hence the science of can and can't, which probably should be the science of could and can't if we are going to be picky). Deutsch and Marletto have proposed a way of using 'counterfactuals'