Skip to main content

Computing with Quantum Cats – John Gribbin ****

A new John Gribbin book is always a delight, and he is at his best when exploring the bizarre possibilities of quantum theory. If you aren’t familiar with his previous books on the subject, the title here might be worrying as it suggests some fiendish bio-electronic device where collections of unwilling cats are wired into a computer, but in fact it’s a follow on from earlier titles In Search of Schrödinger’s Cat and Schrödinger’s Kittens, where the relevance of the cats to the topic has become increasingly strained.
What we have here is an introduction to the wonderful world of quantum computers. Usefully, Gribbin leads us in through conventional computing, with workmanlike short biographies of Turing and von Neumann to help make the route to understanding what is going on in devices we use every day, but of which we have little comprehension, much clearer. It’s good to have a computing history that fully takes into account the British contribution, often sidelined by US work, in part because of the way Churchill unfortunately insisted that most of the UK wartime work be destroyed.
The second section of the book takes us into quantum theory, using Richard Feynman and John Bell as the key biographies, while the third concentrates on quantum computing, leading on the perhaps rather less obviously central character of David Deutsch and taking us through some of the many mechanisms for building a quantum computer that are currently being worked on.
Overall this works very well, and we get a powerful insight into the capabilities of this remarkable technology and the huge challenges that are faced in making it work reliably. To get any idea of how quantum computers work it is necessary to give a good background in quantum theory itself, and this is something that Gribbin can do with one hand tied behind his back. It is indicative of the strange nature of quantum theory that when writing on the subject, I take a very different line on some aspects – notably the many worlds interpretation – and yet both views are currently unassailable. You might even say superposed.
If I have any criticism it is that some areas are brushed over just a little too lightly – this isn’t the book to really get a total low-down on quantum physics as it isn’t its central topic. This means that there are a few places were Gribbin effectively says ‘this happens, but you don’t need to understand it.’ The only specific topic I do think could have been handled better is the very important concept of decoherence, which (unless I missed it) is introduced without ever explaining what it means. Certainly in the first reference to it in the index it is used as if it is obvious what it’s about. Yet in reality it is a subtle concept that is hugely important to the quantum computing business. I really wish there had been a few pages putting this straight.
Overall, without doubt the best book I’ve read to provide the general reader with an introduction to quantum computers, and given their potential importance in the future, that has to make it a brilliant addition to any popular science enthusiast’s shelf.

Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re