Skip to main content

Computing with Quantum Cats – John Gribbin ****

A new John Gribbin book is always a delight, and he is at his best when exploring the bizarre possibilities of quantum theory. If you aren’t familiar with his previous books on the subject, the title here might be worrying as it suggests some fiendish bio-electronic device where collections of unwilling cats are wired into a computer, but in fact it’s a follow on from earlier titles In Search of Schrödinger’s Cat and Schrödinger’s Kittens, where the relevance of the cats to the topic has become increasingly strained.
What we have here is an introduction to the wonderful world of quantum computers. Usefully, Gribbin leads us in through conventional computing, with workmanlike short biographies of Turing and von Neumann to help make the route to understanding what is going on in devices we use every day, but of which we have little comprehension, much clearer. It’s good to have a computing history that fully takes into account the British contribution, often sidelined by US work, in part because of the way Churchill unfortunately insisted that most of the UK wartime work be destroyed.
The second section of the book takes us into quantum theory, using Richard Feynman and John Bell as the key biographies, while the third concentrates on quantum computing, leading on the perhaps rather less obviously central character of David Deutsch and taking us through some of the many mechanisms for building a quantum computer that are currently being worked on.
Overall this works very well, and we get a powerful insight into the capabilities of this remarkable technology and the huge challenges that are faced in making it work reliably. To get any idea of how quantum computers work it is necessary to give a good background in quantum theory itself, and this is something that Gribbin can do with one hand tied behind his back. It is indicative of the strange nature of quantum theory that when writing on the subject, I take a very different line on some aspects – notably the many worlds interpretation – and yet both views are currently unassailable. You might even say superposed.
If I have any criticism it is that some areas are brushed over just a little too lightly – this isn’t the book to really get a total low-down on quantum physics as it isn’t its central topic. This means that there are a few places were Gribbin effectively says ‘this happens, but you don’t need to understand it.’ The only specific topic I do think could have been handled better is the very important concept of decoherence, which (unless I missed it) is introduced without ever explaining what it means. Certainly in the first reference to it in the index it is used as if it is obvious what it’s about. Yet in reality it is a subtle concept that is hugely important to the quantum computing business. I really wish there had been a few pages putting this straight.
Overall, without doubt the best book I’ve read to provide the general reader with an introduction to quantum computers, and given their potential importance in the future, that has to make it a brilliant addition to any popular science enthusiast’s shelf.

Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

Humble Pi - Matt Parker ****

Matt Parker had me thoroughly enjoying this collection of situations where maths and numbers go wrong in everyday life. I think the book's title is a little weak - 'Humble Pi' doesn't really convey what it's about, but that subtitle 'a comedy of maths errors' is far more informative. With his delightful conversational style, honed in his stand-up maths shows, it feels as if Parker is a friend down the pub, relating the story of some technical disaster driven by maths and computing, or regaling us with a numerical cock-up. These range from the spectacular - wobbling and collapsing bridges, for example - to the small but beautifully formed, such as Excel's rounding errors. Sometimes it's Parker's little asides that are particularly attractive. I loved his rant on why phone numbers aren't numbers at all (would it be meaningful for someone to ask you what half your phone number is?). We discover the trials and tribulations of getting cal...

Quantum 2.0 - Paul Davies ****

Unlike the general theory of relativity or cosmology, quantum physics is an aspect of physics that has had a huge impact on everyday lives, particularly through the deployment of electronics, but also, for example, where superconductivity has led to practical applications. But when Paul Davies is talking about version 2.0, he is specifically describing quantum information, where quantum particles and systems are used in information technology. This obviously includes quantum computers, but Davies also brings in, for example, the potential for quantum AI technology. Quantum computers have been discussed for decades - algorithms had already been written for them as early as the 1990s - but it's only now that they are starting to become usable devices, not at the personal level but in servers. In his usual approachable style, Davies gives us four chapters bringing us up to speed on quantum basics, but then brings in quantum computing. After this we don't get solid quantum informat...