Skip to main content

Symmetry and the Beautiful Universe – Leon Lederman & Christopher Hill ****

Although it won’t appeal to everyone, as I will explain in a moment, I think it’s fair to say this is one of most valuable popular science books I have ever read. Symmetry is at the heart of much modern physics, but it is generally concealed under the surface, and when it has to emerge, for example when talking about the standard model of particle physics, every book I have ever read on the subject fails to explain the subject properly. This book doesn’t quite make it, but it is by far the closest I have ever seen to a comprehensible explanation.
Nobel laureate Leon Lederman (the man behind the dreaded ‘God particle’ term) and his usual co-author Christopher Hill pack a huge amount of information into this slim paperback. We begin with an exploration of symmetry itself, bring in the laws of physics, meet Emmy Noether in some detail and specifically her concept that each of the conservation laws corresponds to an underlying symmetry. From there Lederman and Hill bring in classical physics, and particularly inertia, relativity, broken symmetry, quantum physics, local gauge invariance and QED, quarks and QCD, the standard model and the Higgs field. It is a huge achievement just how much of this they get in, and how approachable most of it is with a bit of work.
As that suggests, there is a price to pay for the reader. If you are totally equation averse, you will have problems because there are a lot of them. They are always relatively simple and well explained, but the pages are littered with them (which presents a different problem, as we will discover in a moment). This is a book you will have to work a little bit to read, perhaps occasionally re-reading a section to get the full meaning, but it will be so well worth it.
I just have two issues with the book. Although Lederman and Hill almost make the application of symmetry and gauge theories comprehensible there is one huge gap, where the authors say ‘let’s change something to randomly to have any value as we move through time and space.’ They build the whole explanation of gauge theory on this (this is the first book, by the way, I’ve seen that properly explains where that word ‘gauge’ comes in) – yet as presented it makes no sense. They give no reason why we are asked to choose random values, rather than sticking with a smoothly changing value, or making some other arbitrary decision. Because of this there’s a feeling that your understanding is built on sand. There is also a certain weakness in their historical content – they reproduce the myth that Bruno was burned for his scientific beliefs unquestioningly, for instance.
The other issue is the quality of the physical book itself. I am very careful with books when I read them – paperbacks usually still look brand new with no creases etc. But by the time I had reached the end, half the pages had come away from the spine. I can live with that, but worse still, the book seemed not to have been proof read. Any book has a few typos or small errors that slip through. You can’t spot everything. But page after page there were equations where a character (often the multiply sign, or the Greek letter phi) was replaced with a question mark. It made them much harder to read, the last thing you need with equations in a popular science book. I can’t understand how the publisher or the authors could fail to spot such a glaring error at the proof stage.
Nonetheless an important and hugely informative book on a subject that is at the heart of modern physics but has rarely been comprehensibly explained. Recommended.

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on