Skip to main content

The Golden Ticket: P, NP, and the Search for the Impossible – Lance Fortnow ***

There is good and bad news early on in this book about the P versus NP problem that haunts computing. The good news is that on the description I expected this to be a dull, heavy going book, and it’s not at all. Lance Fortnow makes what could be a fairly impenetrable and technical maths/computing issue light and accessible.
The bad news is that frustratingly he doesn’t actually tell you what P and NP mean for a long time, just gives rather sideways definitions of the problem along the lines of ‘P refers to the problems we can solve quickly using computers. NP refers to the problems to which we would like to find the best solution’, and also that he makes a couple of major errors early on, which make it difficult to be one hundred percent confident about the rest of the book.
The errors come in a section where he imagines a future where P=NP has been proved. This would mean you could write an algorithm to very efficiently match things and select from data. Fortnow suggests that our lives would be transformed. This is slightly cringe-making as fictional future histories often are, but the real problem is that he tells us that the algorithm would make it possible to do two things that I think just aren’t true.
First he says that from DNA you would be able to identify what a person looks like and their personality. Unfortunately, these are both strongly influenced by epigenetic/environmental issues. Anyone who knows adult identical twins (with the same basic DNA) will know that they can look quite different and certainly have very different personalities. And they will usually have been brought up in the same environment. Fortnow is forgetting one of the oldest essentials of computing – it doesn’t matter how good your algorithm is, GIGO – garbage in; garbage out.
The other, arguably worse error is that he says that it will be possible to have accurate weather forecasts going forward X days. This is so horribly wrong. He should have read my book Dice World. The reason you can’t predict the weather at all beyond about 10 days is nothing to do with the quality of the model/algorithm, it is because the system is chaotic. Firstly we just don’t know, and never can know, the initial conditions to enough decimal places not to deviate from the real world. When Lorenz first discovered chaos it was because he entered the starting values in his model to 4 decimal places rather than the 6 to which the model actually worked. It soon deviated from the previous run. We can’t measure things accurately enough. The other problem is that the weather system is so complex – hence the slightly misleading title of Lorenz’s famous paper Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas? – that we can’t possible take into account enough inputs to ever have so good a model as to go forwards that far. Sorry, Lance, it ain’t going to happen.
For the rest, the first half or so of the book goes along pretty well, gradually opening up the nature of P and NP, the problems that are of interest and the ‘hardest’ NP complete problems. I found the main example, used throughout, a hypothetical world called Frenemy where everyone is either a friend or enemy of everyone else confusing and not particularly useful, but Fortnow gets plenty of good stuff in. After that it’s as if he rather runs out of material and it gets a bit repetitious or has rather tangential chapters.
Overall, despite the flaws, a much better and more readable book than I thought it was going to be – but probably best for maths/computing buffs rather than the general popular science audience.

Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Rakhat-Bi Abdyssagin Five Way Interview

Rakhat-Bi Abdyssagin (born in 1999) is a distinguished composer, concert pianist, music theorist and researcher. Three of his piano CDs have been released in Germany. He started his undergraduate degree at the age of 13 in Kazakhstan, and having completed three musical doctorates in prominent Italian music institutions at the age of 20, he has mastered advanced composition techniques. In 2024 he completed a PhD in music at the University of St Andrews / Royal Conservatoire of Scotland (researching timbre-texture co-ordinate in avant- garde music), and was awarded The Silver Medal of The Worshipful Company of Musicians, London. He has held visiting affiliations at the Universities of Oxford, Cambridge and UCL, and has been lecturing and giving talks internationally since the age of 13. His latest book is Quantum Mechanics and Avant Garde Music . What links quantum physics and avant-garde music? The entire book is devoted to this question. To put it briefly, there are many different link...

The Bright Side - Sumit Paul-Choudhury ***

When I first saw The Bright Side (the subtitle doesn't help), I was worried it was a self-help manual, a format that rarely contains good science. In reality, Sumit Paul-Choudhury does not give us a checklist for becoming an optimist or anything similar - and there is a fair amount of science content. But to be honest, I didn't get on very well with this book. What Paul-Choudhury sets out to do is to both identify what optimism is and to assess its place in a world where we are beset with big problems such as climate change (which he goes into in some detail) that some activists position as an existential threat. This is all done in a friendly, approachable fashion. In that sense it's a classic pop-psychology title. For me, Paul-Choudhury certainly has it right about the lack of logic of extreme doom-mongers, such as Extinction Rebellion and teenage climate protestors, and his assessment of the nature of optimism seems very reasonable, if presented at a fairly overview leve...

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on...