Skip to main content

Scatter, Adapt, and Remember – Annalee Newitz ****

I’m not a natural audience for books about surviving disasters (even though I wrote theGlobal Warming Survival Kit). I can’t stand disaster movies, because I can’t take the pragmatic ‘Oh well, some survive,’ viewpoint as I watch millions perish. So I thought that I would find this book, with its subtitle How Humans will survive a mass extinctionsomewhat unappetising – but I was wrong.
The Earth has gone through a number of mass extinctions, where a fair percentage of living species have been killed off. The most famous is the one that mostly took out the dinosaurs around 65 million years ago, but there have been others and, Annalee Newitz points out, if we want to see the long term survival of the human race, we need to be able to make it through one, should it turn up, whether caused by climate change, pandemics, a supervolcano or an asteroid.
What Newitz does surprisingly well here is weave together what are really around four different books, all in one compact volume. We start of with palaeontology, looking back over previous mass extinctions, getting a better understanding of what happened, what survived and how it survived. From here we segue into human pre-history and history, drawing lessons from the plight of the Neanderthal and the impact of plague and other pandemics. After this, in a transitional section we see the examples of the three techniques in the book’s title – scattering in the Jewish disaspora, adaptation in cyanobacteria (and how we could use it) and remembering on the part of the gray whale, before taking another transition into a more science-fiction driven view.
Newitz starts by pointing out the potential lessons to be learned from the SF writing of Octavia Butler who is apparently ‘one of the 20th century’s greatest science fiction writers’, which I was a bit surprised by as I read a lot of science fiction and I’ve never heard of her. The segue here is into the shakiest part of the book where it dabbles in futurology. This broadly divides into relatively short term survival approaches and longer term diaspora into space.
One of the reasons this is the weakest part of the book is that Newitz offers us castle-in-the-air solutions with no obvious way (and certainly no hint) of how to get there from where we are now. So she says we will need underground cities if we need to survive some kinds of impact, while we would be helped by building green cities that merge biology and construction… but it’s not clear how we would ever get started on such major, long term projects. She doesn’t address the reality that humans are very bad at taking the long view.
I was, though, pleasantly surprised by this book, particularly the first half. This is genuinely interesting and thought provoking, up to and including the Octavia Butler section. And though it goes a little downhill after that, it never fails to be readable and interesting – just a little far fetched. So congratulations to Newitz on taking the rare long view – and in having optimism for our ability to survive what the universe can throw at us.

Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re