Skip to main content

Caleb Scharf – Four Way Interview

Caleb Scharf is Director of Astrobiology at Columbia University in New York. He is the winner of the 2011 Chambliss Astronomical Writing Award from the American Astronomical Society, and the Guardian has cited his Life, Unbounded blog at Scientific American as one of the “hottest science blogs,”. His extensive research career has covered cosmology, high-energy astrophysics, and exoplanetary science, and he currently leads efforts to understand the nature of exoplanets and the environments suitable for life in the universe. He has also served as consultant for New Scientist, Discovery Channel, the Science Channel, National Geographic, The New York Times, The Wall Street Journal and others. His book Gravity’s Engines explores the influence of black holes on the universe.
Why science? 
So many evolving reasons. Curiosity, obsessiveness, and a love of stories. The more science I work on the more I see it through the lens of storytelling, and it’s hard to do better than the story of our universe. I can appreciate simplicity and elegance, but as I get older I appreciate more and more the multi-textured, layered, chaotic, and unbelievably interwoven nature of reality. It really is just amazing.
I like the perspective gained from science. It appeals to my core sense of humour that we’re these microscopic specks of cosmic filth assembled into thinking objects, and we’re gawping at the immensity of it all, and actually managing to make a small amount of sense out of it. That’s incredible, and for me is a fundamental part of our humanity.
Why this book? 
Black holes are one of the craziest and most unexpected stories in science. I wanted to cut through the haze of misty eyed rumination about their exotic physics and explain just how real and important they actually are. Every week we’re hearing about new black hole discoveries – and these tell us that super-sized versions inhabit most galaxies and have been co-joined with the nature of galaxies and stars for the past 13 billion years. Because matter falling into holes can generate colossal amounts of energy – easily more than nuclear fusion, it can profoundly influence the cosmic environment. Instead of being off-limits and hidden away, these gateways to quantum gravity help make the universe what it is today.
What’s next?
I’m working on a book called The Copernicus Complex, that comes out in 2014. I’m really excited about this. It’s all about the quest for our cosmic significance, or perhaps insignificance! Like most of my writing it drills down deep into the science, but is also about telling a great tale. I also think that there are a number of original and intriguing ideas in the book, stemming from the latest research in microbiology, exoplanets, cosmology, and even statistical inference. Hopefully it will get people talking!
What’s exciting you at the moment?
I’m always going to say the abundance of exoplanets and the search for life in the universe, but I’m also agog at what’s happening with lab-bench science right now. Incredible things are taking place in optics, quantum physics, and microbiology. I feel that we may be on the verge of a genuine shift in our understanding of the fundamentals of the microscopic world, and I can’t help but wonder how that will lead to new ways to probe the cosmos.

Comments

Popular posts from this blog

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that ‘Galileo discovered the counterintuitive law behind a swinging o...

Ctrl+Alt+Chaos - Joe Tidy ****

Anyone like me with a background in programming is likely to be fascinated (if horrified) by books that present stories of hacking and other destructive work mostly by young males, some of whom have remarkable abilities with code, but use it for unpleasant purposes. I remember reading Clifford Stoll's 1990 book The Cuckoo's Egg about the first ever network worm (the 1988 ARPANet worm, which accidentally did more damage than was intended) - the book is so engraved in my mind I could still remember who the author was decades later. This is very much in the same vein,  but brings the story into the true internet age. Joe Tidy gives us real insights into the often-teen hacking gangs, many with members from the US and UK, who have caused online chaos and real harm. These attacks seem to have mostly started as pranks, but have moved into financial extortion and attempts to destroy others' lives through doxing, swatting (sending false messages to the police resulting in a SWAT te...

Battle of the Big Bang - Niayesh Afshordi and Phil Harper *****

It's popular science Jim, but not as we know it. There have been plenty of popular science books about the big bang and the origins of the universe (including my own Before the Big Bang ) but this is unique. In part this is because it's bang up to date (so to speak), but more so because rather than present the theories in an approachable fashion, the book dives into the (sometimes extremely heated) disputed debates between theoreticians. It's still popular science as there's no maths, but it gives a real insight into the alternative viewpoints and depth of feeling. We begin with a rapid dash through the history of cosmological ideas, passing rapidly through the steady state/big bang debate (though not covering Hoyle's modified steady state that dealt with the 'early universe' issues), then slow down as we get into the various possibilities that would emerge once inflation arrived on the scene (including, of course, the theories that do away with inflation). ...