Skip to main content

A Little History of Science – William Bynum ***

Doing all of science in one book is not an easy task, nor is it obvious how to go about it. William Bynum has chosen to provide us with a breezy high speed canter through the history of science, with the keyword being ‘history’. There is a lot of about the people involved and the context, always good from a popular science viewpoint.
Bynum manages to do this in an approachable way – almost too approachable sometimes as the style veers between writing for adults and for children. The bumf says ‘this is a volume for young and old to treasure together,’ but it really is neither fish nor fowl. The approach generally speaking is one that works best for adults, but then you get a sentence like ‘Galen was very clever and was not afraid to say so,’ that sounds ever so Janet and John.
Perhaps my biggest problem with the book is that while the history side of it was usually fine, the science was not always so. Some of it was just little factual errors – stating that the human appendix has no function – actually it has recently been discovered to have one – or referring to ‘degrees Kelvin’ like ‘degrees Celsius’ where the unit on the Kelvin scale is just kelvins (no degrees). But the problems were more painful when it came to modern physics – it did rather look like the author really didn’t know what he was writing about.
He tells us, for instance, that cyclotrons and synchrotrons were used by Chadwick in ‘smashing high-speed neutrons into heavy atoms’ – but these devices can only accelerate charged particles, and Chadwick used slow neutrons from decaying radioactive substances. He also says that the twins paradox ‘is just a thought experiment and could only happen in science fiction’. Well, no, it’s not, and on a small scale with atomic clocks it has been performed many times. He also seems confused about gravity, commenting that in space ‘there is no gravity. Astronauts and their spacecraft are essentially in free fall.’ The last bit is true, but not because there is no gravity – there’s plenty of gravity at the kind of level that, say the ISS orbits. But that free fall means it isn’t felt.
The absolute worst example is a paragraph that I find almost entirely without meaning. I would be grateful if anyone could explain this one to me:
As Einstein’s E=mc2 tells us, at ever higher speeds – almost the speed of light – in the accelerators the mass is mostly converted into energy. The physicists found that these very fast particles do some fascinating things. The electron emerges unchanged from the accelerator. It is part of a family of force-particles – the leptons.
I am baffled. Overall, then I am not sure what the audience for this book is, nor am I happy that they will get any sensible understanding of modern physics.

Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Target Earth – Govert Schilling *****

I was biased in favour of this great little book even before I started to read it, simply because it’s so short. I’m sure that a lot of people who buy popular science books just want an overview and taster of a subject that’s brand new to them – and that’s likely to work best if the author keeps it short and to the point. Of course, you may want to dig deeper in areas that really interest you, but that’s what Google is for. That basic principle aside, I’m still in awe at how much substance Govert Schilling has managed to cram into this tiny book. It’s essentially about all the things (natural things, I mean, not UFOs or space junk) that can end up on Earth after coming down from outer space. That ranges from the microscopically small particles of cosmic dust that accumulate in our gutters, all the way up to the ten kilometre wide asteroid that wiped out the dinosaurs. Between these extremes are two topics that we’ve reviewed entire books about recently: meteorites ( The Meteorite Hunt...

The Decline and Fall of the Human Empire - Henry Gee ****

In his last book, Henry Gee impressed with his A (Very) Short History of Life on Earth - this time he zooms in on one very specific aspect of life on Earth - humans - and gives us not just a history, but a prediction of the future - our extinction. The book starts with an entertaining prologue, to an extent bemoaning our obsession with dinosaurs, a story that leads, inexorably towards extinction. This is a fate, Gee points out, that will occur for every species, including our own. We then cover three potential stages of the rise and fall of humanity (the book's title is purposely modelled on Gibbon) - Rise, Fall and Escape. Gee's speciality is palaeontology and in the first section he takes us back to explore as much as we can know from the extremely patchy fossil record of the origins of the human family, the genus Homo and the eventual dominance of Homo sapiens , pushing out any remaining members of other closely related species. As we move onto the Fall section, Gee gives ...

The Language of Mathematics - Raúl Rojas ***

One of the biggest developments in the history of maths was moving from describing relationships and functions with words to using symbols. This interesting little book traces the origins of a whole range of symbols from those familiar to all, to the more obscure squiggles used in logic and elsewhere. On the whole Raúl Rojas does a good job of filling in some historical detail, if in what is generally a fairly dry fashion. We get to trace what was often a bumpy path as different symbols were employed (particularly, for example, for division and multiplication, where several still remain in use), but usually, gradually, standards were adopted. This feels better as a reference, to dip into if you want to find out about a specific symbol, rather than an interesting end to end read. Rojas tells us the sections are designed to be read in any order, which means that there is some overlap of text - it feels more like a collection of short essays or blog posts that he couldn't be bothered ...