Skip to main content

Nature’s Nanotech #6 – Silk Elevators – Brian Clegg

 Sixth in our Nature’s Nanotech series
Anyone who talks to young children about science knows that there are two things that really grab their attention – dinosaurs and space. While I’m not aware of any antediluvian nanotechnology, there is certainly an absolutely stunning potential space application that has some natural inspirations. (I’m aware, by the way, that the word ‘antedeluvian’ is both anachronistic and unscientific… but it’s a lovely word that we really shouldn’t lose from the language.)
Nature has some amazing, extremely fine fibres. Take, for example, that everyday wonder, a spider’s web. The spider silk that makes up the web is a spun fibre constructed from proteins. Though light, these filaments are extremely resistant to fracture – tougher than steel. Spider silk is typically 3,000 nanometers across, but its toughness is down to its structure at the nano level.
A team at MIT discovered that the unusual strength is down to a substructure of ‘beta sheet crystals’, which hold the silk together. The linking is done by hydrogen bonds, the same kind of bonding that stops water from boiling at room temperature. Such bonds are easy to break, but the MIT scientists discovered that if they are confined to spaces just a few nanometers in span – as they are in the beta sheet crystals – they become exceedingly strong. So spider silk depends on a kind of nano-glue for its strength.
In the nanotechnology world, the equivalent of spider silk is the carbon nanotube. We are all familiar with the way carbon comes in different physical structures or ‘allotropes’ that have remarkably different properties. Chemically there is no difference between diamond and the graphite in a pencil ‘lead’ but physically one is extremely hard and the other has multiple planes that slide easily over each other making it effectively soft (although those planes themselves are surprisingly tough).
Another way to fit together a structure of carbon atoms is to form a tube. Imagine taking a plane of graphite a single atom thick (technically graphene) and folding it around to make a tubular shape. Carbon nanotubes are amongst the most amazing artefacts ever made. Though simple in structure, they are remarkable both in their strength and their other physical properties.
Electrically they can behave as if they were a metal or a semiconductor, simply as a result of the shape of the tube. Although carbon nanotube electronics is in its infancy, there is considerable speculation about the capabilities of nanotube products. They could be used to make everything from transistors that are switched by a single electron to batteries built into a sheet of paper. But their pièce de résistance is their strength. Carbon nanotubes make spider silk look like tissue. When you compare a nanotube’s strength per unit weight with steel it comes out around 300 times greater.
All kinds of applications are possible for such a remarkable material. Nanotubes are present in the much thicker carbon fibres used to reinforce everything from tennis rackets to bike frames, but only incidentally and in small quantities. At the moment they tend to be used in random bulk combinations of many small fragments – not as strong as a set of individual aligned nanotubes, but still enough to add strength and to change electrical properties. But one potential application could totally transform the space industry.
Getting things into space is expensive. Hugely expensive. To reach a geosynchronous orbit (of which more later) typically costs around $20,000 per kilogram. But there is a hypothetical nanotube technology that once developed could deliver satellites and even people into space for around 1/100th of this cost. What’s more, rocket technology is inherently risky. You will inevitably lose some of your space missions. Yet the nanotube technology could, once established, run day after day without problem.
Imagine you were sitting on top of a house and wanted to get something up there. You could have someone attach your payload to a rocket and shoot it in your direction. But like the space launch it’s a dangerous and expensive solution. Instead you are more likely to throw a piece of string off the roof, have a basket tied to it and then haul the object up.
Now extend this picture to the Empire State Building. Your piece of string would have to be very strong, which would make it quite heavy to haul up and down, increasing the cost of the process. What might be better is to keep the string (or more likely a piece of metal) in place and have the basket haul itself up and down along the supporting structure.
Time to take another jump into that geosynchronous orbit. An object in orbit is in a very strange state. It is in free fall, dropping towards the Earth – but at the same time it is moving sideways at just the right speed so it always misses. This, incidentally, is why people float around in the International Space Station. It’s not because there’s no gravity – the Earth’s gravitational pull at its height (350 kilometres above the Earth’s surface) is around 90% Earth normal. The astronauts float because they and the station are falling. But they stay in orbit because their sideways motion means they keep missing the planet.
Because of this balance, at any particular height there is one speed that keeps you in orbit. And if you go high enough – around 35,786 kilometres up – that speed is the same as the rotational speed of the Earth, making you geosynchronous. Point the orbit in the right direction and you will stay over the same point on the Earth’s surface (this is a geostationary orbit).
So, imagine you could drop a piece of string from a geostationary satellite down to the ground. You could then just send a lift (elevator) up the string and replace all that dangerous, expensive rocketry. What you’ve got is a space elevator – and to make it work, that string needs to be made from carbon nanotubes.
Of course this is a long way in the future, though a range of companies (including, bizarrely Google) are working on the technology required. There’s no doubt that Bradley Edwards of NASA’s Institute of Advanced Concepts was being over-optimistic when in 2002 he commented ‘[With nanotubes] I’m convinced that the space elevator is practical and doable. In 12 years, we could be launching tons of payload…’ However in a more reasonable timescale – perhaps another 30 or 40 years – it is entirely feasible. And you can’t fault the scope of imagination that allows the inspiration of spider silk to transport us into space.
Next week, in the final piece in the series, we will be learning the lesson of the peacock’s tail and the amazing optics it inspires.
Images from Wikipedia and iStockPhoto.com

Comments

Popular posts from this blog

We Are Eating the Earth - Michael Grunwald *****

If I'm honest, I assumed this would be another 'oh dear, we're horrible people who are terrible to the environment', worthily dull title - so I was surprised to be gripped from early on. The subject of the first chunk of the book is one man, Tim Searchinger's fight to take on the bizarrely unscientific assumption that held sway that making ethanol from corn, or burning wood chips instead of coal, was good for the environment. The problem with this fallacy, which seemed to have taken in the US governments, the EU, the UK and more was the assumption that (apart from carbon emitted in production) using these 'grown' fuels was carbon neutral, because the carbon came out of the air. The trouble is, this totally ignores that using land to grow fuel means either displacing land used to grow food, or displacing land that had trees, grass or other growing stuff on it. The outcome is that when we use 'E10' petrol (with 10% ethanol), or electricity produced by ...

Battle of the Big Bang - Niayesh Afshordi and Phil Harper *****

It's popular science Jim, but not as we know it. There have been plenty of popular science books about the big bang and the origins of the universe (including my own Before the Big Bang ) but this is unique. In part this is because it's bang up to date (so to speak), but more so because rather than present the theories in an approachable fashion, the book dives into the (sometimes extremely heated) disputed debates between theoreticians. It's still popular science as there's no maths, but it gives a real insight into the alternative viewpoints and depth of feeling. We begin with a rapid dash through the history of cosmological ideas, passing rapidly through the steady state/big bang debate (though not covering Hoyle's modified steady state that dealt with the 'early universe' issues), then slow down as we get into the various possibilities that would emerge once inflation arrived on the scene (including, of course, the theories that do away with inflation). ...

Why Nobody Understands Quantum Physics - Frank Verstraete and Céline Broeckaert **

It's with a heavy heart that I have to say that I could not get on with this book. The structure is all over the place, while the content veers from childish remarks to unexplained jargon. Frank Versraete is a highly regarded physicist and knows what he’s talking about - but unfortunately, physics professors are not always the best people to explain physics to a general audience and, possibly contributed to by this being a translation, I thought this book simply doesn’t work. A small issue is that there are few historical inaccuracies, but that’s often the case when scientists write history of science, and that’s not the main part of the book so I would have overlooked it. As an example, we are told that Newton's apple story originated with Voltaire. Yet Newton himself mentioned the apple story to William Stukeley in 1726. He may have made it up - but he certainly originated it, not Voltaire. We are also told that ‘Galileo discovered the counterintuitive law behind a swinging o...