Skip to main content

The Infinity Puzzle – Frank Close ****

This is a really important popular science book if you are interested in physics, because it covers some of the important bits of modern physics that most of us science writers are too afraid to write about. Starting with renormalization in QED, the technique used to get rid of the unwanted infinities that plagued the early versions of the theory and moving on to the weak force, the massive W and Z bosons, the Higgs business and the development of the concept of quarks and some aspects of the theory covering the strong force that holds them in place, it contains a string of revelations that I have never seen covered to any degree in a popular text elsewhere.
Take that renormalization business. I have seen (and written) plenty of passing references to this, but never seen a good explanation of what the problem with infinities was really about, or how the renormalization was achieved and justified. Frank Close does this. Similarly I hadn’t realised that Murray Gell-Mann, the man behind the ‘quark’ name, originally took a similar view to quarks as Planck did to quanta – a mathematical trick to get the right answer that didn’t reflect anything real in terms of the particles involved.
For at least the first half of the book I was determined to give it five stars, despite itself. The content was sufficiently important and infrequently covered to require this. That ‘despite itself’ is because this is no light read – it makes the infamously frequently unfinished Brief History of Time seem a piece of cake. I think the reason for this is that the concepts here are more alien to the reader than those typically met in traditional ‘hard’ topics like relativity or quantum theory. Close does define a term like gauge invariance before using it, but then keeps using it for chapter after chapter. The trouble is, to the author this is an everyday concept, but to the reader the words are practically meaningless (unlike, say space and time in relativity), so a couple of pages on from the definition we’ve forgotten what it means and get horribly lost. These aspects (spontaneous symmetry breaking is another example) would have benefited hugely from a more detailed explanation and then use of more approachable terms along the way rather than what can be a highly opaque jargon.
I could forgive the author this though. After all his writing style is fine and there is all that interesting content. But there were a couple of things that dragged the book down a little for me. The first was a tendency to skip over bits of science, leaving them mysterious. For example, at one point we are told that a process can be split into five categories: scalar, pseudo-scalar, tensor, vector and axial. Of these only vector and scalar are defined (there are brief definitions in the end notes, but nothing in the main text), so when we are told that the weak force was classified as V-A, we have no clue what this means as we don’t know what axial means, or the significance of the minus sign. This is Rutherfordian stamp collecting, giving us labels without understanding the meaning.
Worse though, and the dominant part of the second half of the book, was that there was just far too much dissecting exactly who contributed exactly what little component to the theory, and who got the Nobel prize for what, and who didn’t get it, despite deserving it. Frankly, this is too much of an insider’s idea of what’s important. We don’t really care. I wish this had been omitted, leaving room for more handholding on the theory.
The trouble is, there were far too many people involved to get any successful human interest going in the story. Nobel prizes of themselves don’t make people interesting. I have two scientific heroes in the last 100 years – Richard Feynman and Fred Hoyle. (Obviously I’m in awe of the work of many others – Einstein, say – but this misses the point.) In that same period there must have been getting on for 300 Nobel prize winners in physics alone. I’m interested in their work, but I can’t get too excited about them as people. Those who criticise popular science for being too driven by the stories of a few individuals when so many have contributed miss the point. You can only have so many heroes.
Overall this remain a really important book if you want to get to grips with modern particle physics and quantum field theory. It fills in lots of gaps that other books gloss over. But it would be remiss of me not to also point out my concerns.

Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on