Skip to main content

The Infinity Puzzle – Frank Close ****

This is a really important popular science book if you are interested in physics, because it covers some of the important bits of modern physics that most of us science writers are too afraid to write about. Starting with renormalization in QED, the technique used to get rid of the unwanted infinities that plagued the early versions of the theory and moving on to the weak force, the massive W and Z bosons, the Higgs business and the development of the concept of quarks and some aspects of the theory covering the strong force that holds them in place, it contains a string of revelations that I have never seen covered to any degree in a popular text elsewhere.
Take that renormalization business. I have seen (and written) plenty of passing references to this, but never seen a good explanation of what the problem with infinities was really about, or how the renormalization was achieved and justified. Frank Close does this. Similarly I hadn’t realised that Murray Gell-Mann, the man behind the ‘quark’ name, originally took a similar view to quarks as Planck did to quanta – a mathematical trick to get the right answer that didn’t reflect anything real in terms of the particles involved.
For at least the first half of the book I was determined to give it five stars, despite itself. The content was sufficiently important and infrequently covered to require this. That ‘despite itself’ is because this is no light read – it makes the infamously frequently unfinished Brief History of Time seem a piece of cake. I think the reason for this is that the concepts here are more alien to the reader than those typically met in traditional ‘hard’ topics like relativity or quantum theory. Close does define a term like gauge invariance before using it, but then keeps using it for chapter after chapter. The trouble is, to the author this is an everyday concept, but to the reader the words are practically meaningless (unlike, say space and time in relativity), so a couple of pages on from the definition we’ve forgotten what it means and get horribly lost. These aspects (spontaneous symmetry breaking is another example) would have benefited hugely from a more detailed explanation and then use of more approachable terms along the way rather than what can be a highly opaque jargon.
I could forgive the author this though. After all his writing style is fine and there is all that interesting content. But there were a couple of things that dragged the book down a little for me. The first was a tendency to skip over bits of science, leaving them mysterious. For example, at one point we are told that a process can be split into five categories: scalar, pseudo-scalar, tensor, vector and axial. Of these only vector and scalar are defined (there are brief definitions in the end notes, but nothing in the main text), so when we are told that the weak force was classified as V-A, we have no clue what this means as we don’t know what axial means, or the significance of the minus sign. This is Rutherfordian stamp collecting, giving us labels without understanding the meaning.
Worse though, and the dominant part of the second half of the book, was that there was just far too much dissecting exactly who contributed exactly what little component to the theory, and who got the Nobel prize for what, and who didn’t get it, despite deserving it. Frankly, this is too much of an insider’s idea of what’s important. We don’t really care. I wish this had been omitted, leaving room for more handholding on the theory.
The trouble is, there were far too many people involved to get any successful human interest going in the story. Nobel prizes of themselves don’t make people interesting. I have two scientific heroes in the last 100 years – Richard Feynman and Fred Hoyle. (Obviously I’m in awe of the work of many others – Einstein, say – but this misses the point.) In that same period there must have been getting on for 300 Nobel prize winners in physics alone. I’m interested in their work, but I can’t get too excited about them as people. Those who criticise popular science for being too driven by the stories of a few individuals when so many have contributed miss the point. You can only have so many heroes.
Overall this remain a really important book if you want to get to grips with modern particle physics and quantum field theory. It fills in lots of gaps that other books gloss over. But it would be remiss of me not to also point out my concerns.

Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The God Game (SF) - Danny Tobey *****

Wow. I'm not sure I've ever read a book that was quite such an adrenaline rush - certainly it has been a long time since I've read a science fiction title which has kept me wanting to get back to it and read more so fiercely. 

In some ways, what we have here is a cyber-SF equivalent of Stephen King's It. A bunch of misfit American high school students face a remarkably powerful evil adversary - though in this case, at the beginning, their foe appears to be able to transform their worlds for the better.

Rather than a supernatural evil, the students take on a rogue AI computer game that thinks it is a god - and has the powers to back its belief. Playing the game is a mix of a virtual reality adventure like Pokemon Go and a real world treasure hunt. Players can get rewards for carrying out tasks - delivering a parcel, for example, which can be used to buy favours, abilities in the game and real objects. But once you are in the game, it doesn't want to let you go and is …

Uncertainty - Kostas Kampourakis and Kevin McCain ***

This is intended as a follow-on to Stuart Firestein's two books, the excellent Ignorance and its sequel, Failure, which cut through some of the myths about the nature of science and how it's not so much about facts as about what we don't know and how we search for explanations. The authors of Uncertainty do pretty much what they set out to do in explaining the significance of uncertainty and why it can make it difficult to present scientific findings to the public, who expect black-and-white facts, not grey probabilities, which can seem to some like dithering.

However, I didn't get on awfully well with the book. A minor issue was the size - it was just too physically small to hold comfortably, which was irritating. More significantly, it felt like a magazine article that was inflated to make a book. There really was only one essential point made over and over again, with a handful of repeated examples. I want something more from a book - more context and depth - that …

Where are the chemistry popular science books?

by Brian Clegg
There has never been more emphasis on the importance of public engagement. We need both to encourage a deeper interest in science and to counter anti-scientific views that seem to go hand-in-hand with some types of politics. Getting the public interested in science both helps recruit new scientists of the future and spreads an understanding of why an area of scientific research deserves funding. Yet it is possible that chemistry lags behind the other sciences in outreach. As a science writer, and editor of this website, I believe that chemistry is under-represented in popular science. I'd like to establish if this is the case, if so why it is happening - and what can be done to change things. 


An easy straw poll is provided by the topic tags on the site. At the time of writing, there are 22 books under 'chemistry' as opposed to 97 maths, 126 biology and 182 physics. The distribution is inevitably influenced by editorial bias - but as the editor, I can confirm …