Skip to main content

The Epigenetics Revolution – Nessa Carey ****

There have been lots of popular science books about genetics and evolution, and that’s fine – but there really hasn’t been anywhere near enough coverage of epigenetics, which is why Nessa Carey’s book is so welcome. Over the last 30 years or so it has become increasingly obvious that the idea of genes coding for proteins – the basic concept of genetics – is only a starting point for the way DNA acts to provide control software for the body’s development. There is also RNA that is coded by ‘junk’ DNA and the way genes can be switched on and off by various external factors – all together this is far more than genetics alone. This is epigenetics.
Without doubt this is a fascinating subject, and Carey provides plenty of examples of how epigenetics effects our development, our diseases and the way we inherit characteristics. I was genuinely surprised and delighted by many of the revelations. This is really significant stuff, that hasn’t made its way into many of the popular science genetics titles. What’s more Carey’s style is highly approachable and readable. I was convinced part way through the book that this was going to be a five star, top book.
To be honest, the only reason it’s not five star is the nature of the beast. (Okay, I did find Carey’s hero worship of a handful of key biologists a little irritating, but that wouldn’t have influenced the rating.) I’m reminded of Richard Feynman’s comment when studying biology because his physics work wasn’t taking up enough of his time. He was giving a presentation to his classmates, I think on the nervous system of a cat, and started by drawing a ‘map’ of the cat and giving the names of all the relevant components. He was told he didn’t need to tell them all these names, because they were required to learn them. No wonder, concluded Feynman, it took so long to get a biology degree – so much of it was memorizing names, unlike physics, which was much about working out what was happening and required relatively little memorizing.
What I found in Carey’s book was I was getting swamped with all the names of different genes and proteins and goodness knows whats. Some of the pages are dense with these, and after a while I found my eyes bouncing off them. I’d rather she had told us a lot fewer names (you can always, as Feynman pointed out, look them up) and concentrated on the processes and understanding of what’s happening. But, as I say, this is not so much her fault as the nature of biology.
Overall, then, despite occasional parts you might find yourself skipping through, this is a truly eye-opening and exciting book on an important and under-reported topic. For some reason so many books on human biology concentrate on emotions and morality and other aspects on the edge of brain science – it was great to find a book that really took us back to basics, but in a new way.

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re