Skip to main content

Maths 1001 [Mathematics 1001] – Richard Elwes ***

Like its sister title Science 1001, this book takes on an enormous task: telling us ‘everything we need to know about mathematics in 1001 bite-sized explanations’.
It’s a handsome, if rather heavy book, somewhere between a typical hardback and a small coffee table book in size (though with floppy covers). Inside, it’s divided into 10 main sections – from the obvious ones like geometry and algebra, through to the exotics from statistics to game theory. Each section is split into topics – so in geometry you might get ‘Euclidian geometry’ and within each topic there may be around 12 entries.
In a sense, then, this is a mini-encyclopaedia of maths, though arranged by subject, rather than alphabetically. I had mixed feelings about the science entry in the series and those feelings are more extravagantly mixed than ever here. There is no doubt whatsoever that this is a useful book. A good marker of this is that, unlike many of the books that come into the review pile, I intend to keep this one. I think I will come back to it time and again to brush up on what some specific aspect of maths is. (As it is, really, a reference book, it would have been more helpful if the topics were alphabetic, but hey, what do you expect from a mathematician?)
However, as a popular science book to read from cover it has a number of deep flaws. Firstly it’s much too broken up into tiny segments. There is a bit of a flow, brought in by the way the topics are organized, but it’s very weak, and certainly doesn’t make for casual reading matter.
Secondly, far too much of the book is definitions. Time after time, a topic consists of defining what a mathematical term means. I feel a bit like Richard Feynman, who was told in a biology class, when explaining what the various bits of a cat were called, that everyone would be expected to memorise these. He said something to the effect of ‘no wonder this course takes so long’ – he didn’t see why people need to keep all those definitions in memory, and I rather feel the same about maths.
Then there’s the difficulty that the structure has in terms of dealing with some of the essentials of maths. Time after time, the author refers to the number e, without telling us what it is until over 200 pages after it is first mentioned. The assumption for a reader who hasn’t come across it might be that e is just a placeholder, the way j is used elsewhere – although many definitions here aren’t necessary, explaining what something like e is, and why it’s important, is pretty crucial.
As someone with a physics background, I particularly struggle to understand why there’s a whole section in here called ‘mathematical physics.’ No, it’s just physics. Newton’s laws don’t belong in a book on maths – there’s much too much to get your head around already without straying into a different subject.
And to top it all, I think the approach taken is often wrong. Popular science/maths, as opposed to textbooks, adds in explanation and context, not just the theory. By being so strong on definitions, there doesn’t seem to be room for this here. We find very little out about all the fascinating people involved. But even if you decide the format doesn’t allow for context and history, there is still far too little explanation. Two example out of literally hundreds: we are told ‘Up until the early 20th century, 1 was classed as prime, but no longer.’ Why? There are good reasons for this, but it is totally counter-intuitive. The number 1 seems like a prime. After all, it is only divisible by 1 and itself. We need explanation, not statement from authority. Another example is the topic on Bayes’ theorem. This is fascinating in its application, but the explanation is almost unreadable, being mostly equations, and there is nothing about its application in that section (a later one does make use of it, but doesn’t mention it is doing so). Highly frustrating.
Overall then, this is a very useful book if you dip into maths and need a quick reminder of what various things mean. It really is a great resource as a reference book. But it just doesn’t work as popular maths.

Paperback:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Infinite Alphabet - Cesar Hidalgo ****

Although taking a very new approach, this book by a physicist working in economics made me nostalgic for the business books of the 1980s. More on why in a moment, but Cesar Hidalgo sets out to explain how it is knowledge - how it is developed, how it is managed and forgotten - that makes the difference between success and failure. When I worked for a corporate in the 1980s I was very taken with Tom Peters' business books such of In Search of Excellence (with Robert Waterman), which described what made it possible for some companies to thrive and become huge while others failed. (It's interesting to look back to see a balance amongst the companies Peters thought were excellent, with successes such as Walmart and Intel, and failures such as Wang and Kodak.) In a similar way, Hidalgo uses case studies of successes and failures for both businesses and countries in making effective use of knowledge to drive economic success. When I read a Tom Peters book I was inspired and fired up...

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...

The War on Science - Lawrence Krauss (Ed.) ****

At first glance this might appear to be yet another book on how to deal with climate change deniers and the like, such as How to Talk to a Science Denier.   It is, however, a much more significant book because it addresses the way that universities, government and pressure groups have attempted to undermine the scientific process. Conceptually I would give it five stars, but it's quite heavy going because it's a collection of around 18 essays by different academics, with many going over the same ground, so there is a lot of repetition. Even so, it's an important book. There are a few well-known names here - editor Lawrence Krauss, Richard Dawkins and Steven Pinker - but also a range of scientists (with a few philosophers) explaining how science is being damaged in academia by unscientific ideas. Many of the issues apply to other disciplines as well, but this is specifically about the impact on science, and particularly important there because of the damage it has been doing...