Skip to main content

Small World – Mark Buchanan ***

It’s entirely possible for something to be both fascinating and intensely unsatisfying – and that is how I felt about Small World and the topic it covers.
The subject at the book’s heart is ‘small world networks’. This is the idea behind the famous (or infamous) concept of six degrees of separation. Based on an experiment by Stanley Milgram in 1970, the idea is that everyone in the world is connected to everyone else by no more than six links. The original experiment has been criticized for being limited to the US (hardly the whole world) and not taking in enough barriers of language, class and ethnicity – yet even when these are taken into account, there is a surprisingly small number of jumps required to get from most of us to most others.
What’s even more fascinating is that this type of network occurs widely in self-organizing systems, whether it’s the structure of the internet or biological food chains. What tends to crop up are networks where there are local clusters with a few long distance links, which drastically increase the chances of wide ranging connectivity. There isn’t a single style of these small world networks – some, for instance, have vast hubs with many spokes, while others are more democratic. (Interestingly, the internet, which was supposed to be democratic to avoid losing connectivity, as it was originally a military network that had to survive attack, has gone entirely the other way with huge hubs.)
What strikes me is the vagueness of it all. There seems to be an imprecision that’s most unusual for a mathematical discipline. This could be down to the way Buchanan is presenting things of course – his style is very readable but this does sometimes (not always!) bring a degree of smoothing over. Just as an example, we are told about Erdös in 1959 solving the puzzle of how many roads are required, placed randomly, to join 50 towns. Buchanan tells us ‘It turns out, the random placement of about 98 roads is adequate to ensure that the great majority of towns are linked.’ I’m sorry? What does about 98 mean? How about ensuring the vast majority are linked? That’s small consolation if you live in one of the towns that is isolated.
The other vagueness, in the ‘six degrees of separation’ model is what we really count as an acquaintance. It’s such a fuzzy concept, it’s hard to see just how it can be made to operate with the precision required by mathematics. I have nearly 1,000 people in my email address book. Are they all acquaintances? How about those lovely people on the Nature Network with whom I often exchange comments about blog entries, but none of whom have I ever met or spoken to, and only two have I ever emailed? For that matter, what about my ‘harvest’ emails? Is somebody an acquaintance because I’ve seen their email address? Probably not. How about when someone sends me an email and copies in lots of other people. Are those email addresses part of my contact circle? I don’t know – and I doubt if the people who play around with this interesting, but in some senses rather futile feeling, research do either.
Both these examples relate to why there’s an underlying lack of satisfaction. Like chaos theory, this is a concept where initially you feel ‘wow, this should give amazing insights’ because it’s so fascinating, but then it doesn’t. I’m reminded of Rutherford’s famous remark ‘All science is either physics or stamp collecting.’ Dare I say it – this feels a bit like stamp collecting.

Paperback:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

On the Fringe - Michael Gordin *****

This little book is a pleasant surprise. That word 'little', by the way, is not intended as an insult, but a compliment. Kudos to OUP for realising that a book doesn't have to be three inches thick to be interesting. It's just 101 pages before you get to the notes - and that's plenty. The topic is fringe science or pseudoscience: it could be heavy going in a condensed form, but in fact Michael Gordin keeps the tone light and readable. In some ways, the most interesting bit is when Gordin plunges into just what pseudoscience actually is. As he points out, there are elements of subjectivity to this. For example, some would say that string theory is pseudoscience, even though many real scientists have dedicated their careers to it. Gordin also points out that, outside of denial (more on this a moment), many supporters of what most of us label pseudoscience do use the scientific method and see themselves as doing actual science. Gordin breaks pseudoscience down into a n

A (Very) Short History of Life on Earth - Henry Gee *****

In writing this book, Henry Gee had a lot to live up to. His earlier title  The Accidental Species was a superbly readable and fascinating description of the evolutionary process leading to Homo sapiens . It seemed hard to beat - but he has succeeded with what is inevitably going to be described as a tour-de-force. As is promised on the cover, we are taken through nearly 4.6 billion years of life on Earth (actually rather more, as I'll cover below). It's a mark of Gee's skill that what could have ended up feeling like an interminable list of different organisms comes across instead as something of a pager turner. This is helped by the structuring - within those promised twelve chapters everything is divided up into handy bite-sized chunks. And although there certainly are very many species mentioned as we pass through the years, rather than feeling overwhelming, Gee's friendly prose and careful timing made the approach come across as natural and organic.  There was a w

Michael D. Gordin - Four Way Interview

Michael D. Gordin is a historian of modern science and a professor at Princeton University, with particular interests in the physical sciences and in science in Russia and the Soviet Union. He is the author of six books, ranging from the periodic table to early nuclear weapons to the history of scientific languages. His most recent book is On the Fringe: Where Science Meets Pseudoscience (Oxford University Press). Why history of science? The history of science grabbed me long before I knew that there were actual historians of science out there. I entered college committed to becoming a physicist, drawn in by the deep intellectual puzzles of entropy, quantum theory, and relativity. When I started taking courses, I came to understand that what really interested me about those puzzles were not so much their solutions — still replete with paradoxes — but rather the rich debates and even the dead-ends that scientists had taken to trying to resolve them. At first, I thought this fell under