Skip to main content

The Equation that Couldn’t be Solved – Mario Livio *****

A book we recently reviewed (Unknown Quantity by John Derbyshire) claimed to provide an engaging history of algebra, but failed to deliver. This book, by contrast, does much more than it claims. Not only does provide a genuinely readable history of algebra, but this is just a precursor to the development of group theory, its link to symmetry, and the importance of symmetry in the natural world. (If you are wondering what this has to do with an equation that couldn’t be solved, along the way it describes how it was eventually proved that you can’t produce a simple formula to predict the solutions to quintic equations – if that sounds painful, don’t worry, it isn’t in this book.)
I can’t remember when I last read a mathematics book that was so much of a page turner. Mario Livio has just the right touch in bringing in the lives and personalities of the mathematicians involved, and though he isn’t condescending in his approach, and occasionally readers may find what’s thrown at them a little hard to get their mind around, provided you are prepared to go with the flow and not worry too much if you understand every nuance, it is superb. Just an example of the throw-away brilliance – I’ve read a good number of books on string theory, but this is the first time I’ve seen it made clear how the mathematical basis of the theory is put together. Just occasionally it’s possible that Livio is skimming over a point in a little too summary a fashion – but that’s rare.
If you have read any other maths histories, you may already have come across some biographical detail of Abel and Galois, two very significant men in this story, who have the added biographical mystique of dying young. However, I really felt that Livio has added something to what has been said before, especially in his exploration of Galois’ mysterious death, and also in the way he sets the scene in France at the time, entirely necessary for those of us who haven’t studied history.
The one disappointment with the book is its final chapter, in which Livio tries to examine what creativity is and why some people are creative mathematicians. It sits uncomfortably, not fitting with the flow of the rest of the contents, and it’s clearly a subject the author knows less about than maths and physics. He makes a classic error (which may be one that mathematicians are particularly prone to) of assuming there is a single right answer to a real world problem. Livio challenges us with this problem: “You are given six matches of equal length, and the objective is to use them to form exactly four triangles, in which all the sides of all the four triangles are equal.” He then shows us “the solution” in an appendix. The fact is that almost all real world problems, outside the pristine unreality of maths, have more than one solution. In this case, his solution (to form a 3D tetrahedron) is not the only solution, and arguably is not even the best solution.*
However, despite the aberration of this chapter, the rest of the book is a tonic – absolutely one of the best popular maths books we’ve ever seen. Highly recommended.
* Here’s one other solution. For four equilateral triangles, you need 12 identical length sides. So cut each matchstick in half. You now have 12 identical length pieces and can make the four triangles. This is arguably a better solution because it is freestanding – Livio’s solution has to be held in place – and because it is more mathematically pleasing. If you take one triangle away from this solution (4-1=3) you end up with 3 triangles. if you take one triangle away from Livio’s solution, you end up with 0 triangles. (4-1=0). We can think of at least one other solution, and there are almost certainly more.

Paperback 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on