Skip to main content

The Fly in the Cathedral – Brian Cathcart *****

The fly in question is the atomic nucleus, which Cathcart tells us was, in the early days of its discovery, compared in size with the whole atom as a fly compares to a cathedral.
This is the story of the race to split the atomic nucleus, not with any application of producing power or bombs in mind, but simply because very little was known about the nucleus, theory needed a lot of help (until quite a way through the book, for example, the neutron was just a crazy idea of Rutherford’s that hardly anyone believed in), and by battering the nucleus into bits more could be found out about it.
It’s terrific stuff. Centred on the Cavendish Laboratory in Cambridge, the main players are John Cockcroft and Ernest Walton, two youngish researchers, with in the very near background the remarkable figure of Rutherford. As we follow the ups and downs of their progress in building bizarre equipment, there’s a terrific feeling of presence – it really is as if you have a view on what was happening. Many other scientists play a role – some, like the remarkable George Gamow coming up with crucial ideas, others challengers to split the atom first.
Part of what surprises is the nature of the challenges. These were still fairly crude pieces of equipment, and one of the hardest things proved to be turning the high voltage electricity used to accelerate the protons used to smash into nuclei from AC to DC – the team had to devise their own rectifiers to cope with the high voltages, initially held together with sealing wax or plasticine modelling clay. Then there is the Frankenstein movie reality of the apparatus. Great glass tubes that glowed, sparks crackling across air gaps, and a lab that was so dangerous that the researchers had to crawl along the ground the observing chamber to avoid being electrocuted.
The author is quite blunt about not having a scientific background, but this really doesn’t stand in the way of his telling a fascinating story superbly well. Perhaps the only surprising omission, that might be explained by this, is that he frequently mentions the British physicist P. A. M. Dirac, and also mentions the US experimental discovery of the positron from early accelerator experiments, but never links the two with Dirac’s earlier prediction of the existence of the positron. However, this has nothing to do with the main story, so is a very minor omission. On the workings of the worlds foremost physics laboratory in the early 1930s this book can’t be faulted, and is a must for anyone who enjoys popular science.

Using these links earns us commission at no cost to you 
Review by Brian Clegg


Popular posts from this blog

Models of the Mind - Grace Lindsay *****

This is a remarkable book. When Ernest Rutherford made his infamous remark about science being either physics or stamp collecting, it was, of course, an exaggeration. Yet it was based on a point - biology in particular was primarily about collecting information on what happened rather than explaining at a fundamental level why it happened. This book shows how biologists, in collaboration with physicists, mathematicians and computer scientists, have moved on the science of the brain to model some of its underlying mechanisms. Grace Lindsay is careful to emphasise the very real difference between physical and biological problems. Most systems studied by physics are a lot simpler than biological systems, making it easier to make effective mathematical and computational models. But despite this, huge progress has been made drawing on tools and techniques developed for physics and computing to get a better picture of the mechanisms of the brain. In the book we see this from two directions

The Ten Equations that Rule the World - David Sumpter ****

David Sumpter makes it clear in this book that a couple of handfuls of equations have a huge influence on our everyday lives. I needed an equation too to give this book a star rating - I’ve never had one where there was such a divergence of feeling about it. I wanted to give it five stars for the exposition of the power and importance of these equations and just two stars for an aspect of the way that Sumpter did it. The fact that the outcome of applying my star balancing equation was four stars emphasises how good the content is. What we have here is ten key equations from applied mathematics. (Strictly, nine, as the tenth isn’t really an equation, it’s the programmer’s favourite ‘If… then…’ - though as a programmer I was always more an ‘If… then… else…’ fan.) Those equations range from the magnificent one behind Bayesian statistics and the predictive power of logistic regression to the method of determining confidence intervals and the kind of influencer matrix so beloved of social m

How to Read Numbers - Tom Chivers and David Chivers *****

This is one of my favourite kinds of book - it takes on the way statistics are presented to us, points out flaws and pitfalls, and gives clear guidance on how to do it better. The Chivers brothers' book isn't particularly new in doing this - for example, Michael Blastland and Andrew Dilnot did something similar in the excellent 2007 title The Tiger that Isn't - but it's good to have an up-to-date take on the subject, and How to Read Numbers gives us both some excellent new examples and highlights errors that are more common now. The relatively slim title (and that's a good thing) takes the reader through a whole host of things that can go wrong. So, for example, they explore the dangers of anecdotal evidence, tell of study samples that are too small or badly selected, explore the easily misunderstood meaning of 'statistical significance', consider confounders, effect size, absolute versus relative risk, rankings, cherry picking and more. This is all done i