Skip to main content

Eureka! The Birth of Science – Andrew Gregory *****

“Oh, no, not the ancient Greeks? Yawn, yawn, what a bore.” If this is your natural reaction to a book on the ancient Greek origins of science, hold on there. It’s easy enough to think of the Greeks as a bit of a bore because they tended to be long winded and philosophising (and they foisted geometry on us, for goodness sake) – but the fact is that their work, mostly wrong though it may be, is the foundation of all of science.
What’s more, Andrew Gregory makes the whole business interesting, without resorting to any fancy literary tricks – it’s a straightforward historical tour of the Greek prehistory of science that is simply bursting with insight. If you’ve ever wondered why it was such a big deal that Galileo and others should suggest that the Earth wasn’t at the centre of things, here is part of the explanation. It’s not just a matter of selfish assumption, but the entire Aristotelian physics depended on it. Without the Earth at the centre of things, his equivalent of gravity simply wouldn’t work.
Because so much of the actual detail is wrong, it’s also easy to dismiss the ancient Greeks’ input to science – but, as Gregory emphasizes, it was a huge leap to move from the assumption that the cause of natural events and objects was mythological and down to the intervention of gods, to a rule-based cosmos where it was possible to deduce a logical explanation for events. He contrasts, for instance, the Babylonians and Egyptians, who achieved great technological feats, and were quite capable of recording and predicting natural events, but who resolutely put the explanation of why down to supernatural intervention, and who consistently resorted to inconsistent myth to explain how the cause was working.
Some would argue that Gregory has been a little premature – that the ancient Greeks weren’t so much the earliest part of the history of science, but the prehistory of science. To make this distinction, what the Greeks did is often called natural philosophy, based on observation and argument, as opposed to science, based on observation, experiment and the development and refinement of theory from those observations and experiments. So it’s worth taking a look at least three other books that ascribe the birth of science to later midwifes:
  • Medieval friar Roger Bacon in my Roger Bacon: The First Scientist
  • Leonardo da Vinci in Michael White’s Leonardo, and
  • Galileo in John Gribbin’s Science: A History
but even they would agree with Gregory how significant the ancient Greeks foundations are, and the great thing is to get a very effective grounding in these Greek ideas in a single, compact and enjoyable book. Nice one.

Using these links earns us commission at no cost to you 
Review by Brian Clegg


Popular posts from this blog

Grace Lindsay - Four Way Interview

Grace Lindsay is a computational neuroscientist currently based at University College, London. She completed her PhD at the Centre for Theoretical Neuroscience at Columbia University, where her research focused on building mathematical models of how the brain controls its own sensory processing. Before that, she earned a bachelor’s degree in Neuroscience from the University of Pittsburgh and received a research fellowship to study at the Bernstein Center for Computational Neuroscience in Freiburg, Germany. She was awarded a Google PhD Fellowship in Computational Neuroscience in 2016 and has spoken at several international conferences. She is also the producer and co-host of Unsupervised Thinking , a podcast covering topics in neuroscience and artificial intelligence. Her first book is Models of the Mind . Why science? I started my undergraduate degree as a neuroscience and philosophy double major and I think what drew me to both topics was the idea that if we just think rigorously enou

A Citizen's Guide to Artificial Intelligence - John Zerilli et al ****

The cover of this book set off a couple of alarm bells. Not only does that 'Citizen's Guide' part of the title raise the spectre of a pompous book-length moan, the list of seven authors gives the feel of a thesis written by committee. It was a real pleasure, then, to discover that this is actually a very good book. I ought to say straight away what it isn't - despite that title, it isn't a book written in a style that's necessarily ideal for a general audience. Although the approach is often surprisingly warm and human, it is an academic piece of writing. As a result, in places it's a bit of a trudge to get through it. Despite this, though, the topic is important enough - and, to be fair, the way it is approached is good enough - that it deserves to be widely read. John Zerilli et al give an effective, very balanced exploration of artificial intelligence. Although not structured as such, it's a SWOT analysis, giving us the strengths, weaknesses, opportun

The Science of Can and Can't - Chiara Marletto *****

Without doubt, Chiara Marletto has achieved something remarkable here, though the nature of the topic does not make for an easy read. The book is an attempt to popularise constructor theory - a very different approach to physics, which Oxford quantum physicist David Deutsch has developed with Marletto. Somewhat oddly, the book doesn't use the term constructor theory, but rather the distinctly clumsier 'science of can and can't'. The idea is that physics is formulated in a way that is inherently limited because it depends on using mechanisms that follows the progress of dynamic systems using the laws of physics. This method isn't applicable in circumstances where either something may happen, but won't necessarily, nor where something isn't allowed to happen (hence the science of can and can't, which probably should be the science of could and can't if we are going to be picky). Deutsch and Marletto have proposed a way of using 'counterfactuals'