Skip to main content

Through Two Doors at Once - Anil Ananthaswamy *****

It's sometimes hard to imagine that there's anything new to say about the basics of quantum physics, yet Anil Ananthaswamy manages this in a twofold manner (appropriately, given the title). Through Two Doors at Once does so by using the double slit experiment as a constant reference point throughout the book, and by bringing in a number of the more modern variants on the experiment which rarely feature in popular accounts of quantum theory.

Strictly, the book should probably be called 'Through Two Doors at Once and Spooky Action at a Distance plus Things That Have a Similar Effect', as it uses both the double slit experiment and the EPR entanglement thought experiment, plus modern experiments which don't, for example, involve slits but rather beam splitters that are their logical equivalent - but I have to admit, that would be a clumsy title.


Ananthaswamy gives us a good overview of the development of quantum physics - sometimes quite summary - but by making repeated use of the double slit, going all the way back to Thomas Young, but also looking at the quantum specifics, he both helps the reader get a better feel for just why quantum physics can seem strange and also what the different interpretations, from Copenhagen to Many Worlds, tell us about what we can and can't know of what's happening inside the experiment.


The part of the book covering interpretations is perhaps slightly less effective than the rest, because, in the end, unless you are an enthusiast for a particular interpretation, the diversity of ideas tends to obscure, rather than help get a better understanding. (We still have to come back to Feynman's crushing '[Y]ou think I’m going to explain it to you so you can understand it? No, you’re not going to be able to understand it... You see, my physics students don’t understand it either. This is because I don’t understand it. Nobody does.')


The best part of this section is the explanation of the Bohm/deBroglie interpretation where there is both a wave and a particle, though there is one minor problem here, as we are told that making a strong measurement in the Bohm model leaves particles where you don't expect them to be - but are not told why the strong measurement of the particle causing a scintillation on a screen does leave them where we expect them to be.


For me, the only real improvement would have been to put a bit more character into the historical context: it's rather dry and summary. So, for example, we are not told about Einstein's dismissive 'Ist mir Wurst' remark about EPR's confusing use of two measurements. Another example: John Wheeler is described as coining the term 'black hole', rather than giving us the more interesting actual story. There's enough to get the point, but it could have been made more engaging.


Overall, though, Anathanswamy cleverly comes at quantum physics from a different direction, and as a result, adds to the picture we get from most popular titles. We really get into why the double slit plus entanglement are often described as the central mysteries of quantum theory, and though they can still send the brain spinning, there's the best description of many of the more recent experiments I've seen - useful as they can seem a little pointless without this kind of in-depth picture. An excellent addition to the 'Quantum physics for the rest of us' shelf.


Hardback:  

Kindle:  
Using these links earns us commission at no cost to you

Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re