Skip to main content

Schrödinger's Cat and 49 other experiments - Adam Hart-Davis ***

Dealing with a massive subject like physics as a ‘straight’ end to end book and making it approachable is quite a challenge. Publishers often look for some kind of hook to do this - and combined with the popularity (I can only assume primarily as gift books) of graphically interesting books with 50 or so bite-sized articles, we get to the idea of telling the story of physics through 50 experiments - and that's what turns up in Adam Hart-Davis's new title Schrödinger's Cat and 49 Other Experiments that Revolutionised Physics.

The problem is, of course, that while experiments are important, so is theory. Which gives us a problem. Do you represent Maxwell’s remarkable theoretical work on electromagnetism using Hertz’s comparatively trivial experiments? What about Einstein’s work or that of the quantum theory gang? Even the title 'experiment' of the book is a thought experiment.

The answer here is to cheat - but strangely only sometimes. Within the book, Hart-Davis refers not to experiments, as in the title, but studies, which makes theory more open to consideration. So some of the ‘experiments’ in the book are actually nothing more than the development of theories. Yet sometimes, puzzlingly, he does hide the important bit behind a lesser experiment - so, for example Bohr’s quantum atom is just a section inside the article on a largely forgotten experiment by Frank and Hertz (remember that one? And no, it's not the 'real' Hertz, who was dead by then, it's his nephew).

What I find impressive about this book is the way that Hart-Davis packs so much into the typically three page articles. From Galileo (thankfully consigning the Leaning Tower drop to legend) to the LHC he often manages to avoid over-simplifying significantly and does not just cover the key experiment (or theory) the article is headlined with, but brings in associated material. Sometimes the articles do feel a little dull - but the good thing about this format is there’s always something new over the next page.

Sometimes the illustrations are useful too - there are some quite clear diagrams - though all too often what we have is a Monty Python style image that doesn’t even give you a useful idea of what’s being illustrated. So, to pick an example at random, Marie Curie is pictured - fine - but with half her face covered with a radioactivity symbol and what may be a diagram of an atom. A triumph of style over substance.

Inevitably with any list of key experiments (and theories) there will be gaps and unnecessary inclusions to quibble about. Is it really necessary to include Schrodinger’s sad old cat as ‘an experiment that revolutionised physics’? It might be iconic, but it didn’t change anything. By contrast, for example, we don’t get Aspect’s quantum entanglement experiment or, horrendously, anything about Maxwell. We jump straight from 1850 to 1887. Admittedly, though Maxwell carried out plenty of experiments, he didn’t so on electromagnetism, but as we’ve seen there are plenty of theory-based articles here, so the omission of what the likes of Einstein and Feynman regarded as one of the most essential pieces of work in the history of physics is baffling.

Overall, Hart-Davis, a veteran science communicator, does surprisingly well given the challenge he faced. Because of the book’s style, I can’t give it more than three stars, but he does far better than it should be possible in this format.

Paperback:  



Review by Brian Clegg

Comments

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Creativity Code - Marcus du Sautoy *****

At first glance this might just be another 'What AI is good at and not so good at' title. And in a way, it is. But, wow, what a brilliant book! Marcus du Sautoy takes us on a tour of what artificial intelligence has achieved (and possibly can in the future achieve) in a range of fields from his own of mathematics, through game playing, music, art and more.

After a little discussion of what creativity is, we start off with the now very familiar story of DeepMind's AlphaGo and its astonishing ability to take on the hugely challenging game of Go. Even though I've read about this many times before, du Sautoy, as a Go player and mathematician, gives a real feel for why this was such a triumph - and so shocking. Not surprisingly he is also wonderful on what mathematicians actually do, how computers have helped them to date and how they have the potential to do far more in the future. After all, mathematics is by far the closest science to game playing, as it has strict rule…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…