Skip to main content

Kepler and the Universe - David Love ****

I got my remaindered copy of this book from one of those quirky shops in Glastonbury that specialises in all things mystical. Don’t let that put you off, though – there’s actually a lot more science than mysticism in it. On top of that, it’s the best biography I’ve read for a long time – well-researched and insightful, but fast-moving and highly readable at the same time.

The world Kepler lived in was very different from ours (his dates were 1571 – 1630). In those days, it wasn’t a case of scientific rationalism on one side versus religion and woolly-minded mysticism on the other. Science barely entered the picture – it hadn’t even crystallised into its modern form yet. Europe was torn apart by arguments, not between religion and science, but between different flavours of religion. A bafflingly incomprehensible struggle between Lutherans and Calvinists sizzles away in the background throughout the book.

There were mystics in those days, too. We’re told, for example, that Kepler’s patron, the Emperor Rudolf II, ‘was only interested in wizards, alchemists, cabbalists and the like’. Unlike today, however, the mystics weren’t anti-science (because, as already mentioned, science hadn’t been invented yet). If anything, in their fumblings towards ‘the truth’, the mystics were actually pushing the world closer and closer to a genuine scientific method. And Johannes Kepler was one of them.

His official title was Imperial Mathematician. To modern eyes that might look highly scientific, but in those days the idea that mathematics could provide a meaningful description of the real world was essentially a mystical one. Mathematics had always been used in astronomy, but only as a calculating tool. It was Kepler’s big idea that a mathematical model of the Solar System could actually tell you something about how it worked. Like all his contemporaries, Kepler believed that God had created the universe – but he capped that with the ‘mystical’ idea that it had been created along strictly mathematical lines.

This is where Kepler’s greatest scientific contribution came from – the notion that the planets move on elliptical orbits around the Sun, at speeds determined by precise mathematical laws. I already knew that – but the book gives a fascinating and lucid account of how Kepler got to that stage which was completely new to me. I was also surprised to discover that he anticipated Newton in ascribing planetary motion to a force emanating from the Sun – although he was thinking more in terms of an ethereal whirlpool than gravity.

As David Love says at one point, ‘Kepler could sometimes be utterly wrong, just as he was often brilliantly right’. As well as correctly explaining the speed of planetary orbits, he erroneously explained their spacing using a geometrical theory of ‘perfect solids’ borrowed from ancient Greek philosophy. Throughout his life he was a firm believer in astrological prediction, albeit in a semi-rationalised form: ‘he saw astrology in much the same way as we now see our genes – not as a complete determinant of all our actions but as a strong and inescapable influence on us’. He was also devoutly religious, and believed that God created the universe solely for the benefit of humans on Earth: ‘He strongly disapproved of [the] idea of an infinite universe in which the stars were suns like our own.’

That last point is particularly ironic, because many people today will only know the name ‘Kepler’ in the context of NASA’s exoplanet-hunting space telescope. If you’re in that category and want to know more about the person it was named after – or if you know about Kepler’s laws but not about the man behind them – then this is the book to read.


Hardback:  

Kindle:  
Using these links earns us commission at no cost to you


Review by Andrew May

Comments

Popular posts from this blog

The Genetic Book of the Dead: Richard Dawkins ****

When someone came up with the title for this book they were probably thinking deep cultural echoes - I suspect I'm not the only Robert Rankin fan in whom it raised a smile instead, thinking of The Suburban Book of the Dead . That aside, this is a glossy and engaging book showing how physical makeup (phenotype), behaviour and more tell us about the past, with the messenger being (inevitably, this being Richard Dawkins) the genes. Worthy of comment straight away are the illustrations - this is one of the best illustrated science books I've ever come across. Generally illustrations are either an afterthought, or the book is heavily illustrated and the text is really just an accompaniment to the pictures. Here the full colour images tie in directly to the text. They are not asides, but are 'read' with the text by placing them strategically so the picture is directly with the text that refers to it. Many are photographs, though some are effective paintings by Jana Lenzová. T

Everything is Predictable - Tom Chivers *****

There's a stereotype of computer users: Mac users are creative and cool, while PC users are businesslike and unimaginative. Less well-known is that the world of statistics has an equivalent division. Bayesians are the Mac users of the stats world, where frequentists are the PC people. This book sets out to show why Bayesians are not just cool, but also mostly right. Tom Chivers does an excellent job of giving us some historical background, then dives into two key aspects of the use of statistics. These are in science, where the standard approach is frequentist and Bayes only creeps into a few specific applications, such as the accuracy of medical tests, and in decision theory where Bayes is dominant. If this all sounds very dry and unexciting, it's quite the reverse. I admit, I love probability and statistics, and I am something of a closet Bayesian*), but Chivers' light and entertaining style means that what could have been the mathematical equivalent of debating angels on

David Spiegelhalter Five Way interview

Professor Sir David Spiegelhalter FRS OBE is Emeritus Professor of Statistics in the Centre for Mathematical Sciences at the University of Cambridge. He was previously Chair of the Winton Centre for Risk and Evidence Communication and has presented the BBC4 documentaries Tails you Win: the Science of Chance, the award-winning Climate Change by Numbers. His bestselling book, The Art of Statistics , was published in March 2019. He was knighted in 2014 for services to medical statistics, was President of the Royal Statistical Society (2017-2018), and became a Non-Executive Director of the UK Statistics Authority in 2020. His latest book is The Art of Uncertainty . Why probability? because I have been fascinated by the idea of probability, and what it might be, for over 50 years. Why is the ‘P’ word missing from the title? That's a good question.  Partly so as not to make it sound like a technical book, but also because I did not want to give the impression that it was yet another book