Skip to main content

Steven Weinberg - Four Way Interview

Steven Weinberg was educated at Cornell, Copenhagen, and Princeton, and taught at Columbia, Berkeley, M.I.T., and Harvard. In 1982 he moved to The University of Texas at Austin and founded its Theory Group. At Texas he holds the Josey Regental Chair of Science and is a member of the Physics and Astronomy Departments. His research has spanned a broad range of topics in quantum field theory, elementary particle physics, and cosmology, and has received numerous awards, including the Nobel Prize in Physics. His latest book is To Explain the World.

Why science?

I have known that I wanted to be a theoretical physicist since I was sixteen  It was irresistible to me to think that, by stewing over what is known experimentally in the light of present theories, and noodling around with equations, someone could come up with a new theory that turned out to make successful predictions about the real world.  That earlier successful theories like quantum mechanics and relativity were esoteric and counter-intuitive and used fancy mathematics only added to the challenge.

Why this book?

A while ago I decided that I needed to learn more about an earlier era of the history of science, when the goals and standards of physics and astronomy had not yet taken their present shape.  I became impressed with the many differences between the mentality of scientists before the seventeenth century and our own.  It was terribly difficult for them to learn what sort of thing can be learned about the world, and how to learn it.  I tried in this book to give the reader an idea of hard it has been to come to anything like modern science.

What’s next?

Cambridge University Press and I are nursing the second edition of my graduate-level treatise, “Lectures on Quantum Mechanics,” through to publication later this year.  I have added a lot of new material, and sharpened the arguments that lead to a controversial conclusion, that at present there is no really satisfactory interpretation of quantum mechanics.

What’s exciting you at the moment?

There are several experimental facilities that are now coming on line, and that we hope will make discoveries of fundamental importance.  One is the improved Large Hadron Collider, which is starting up again soon at higher energy, and may be able to discover signs of supersymmetry, and/or the dark matter particles that astronomers tell us make up 5/6 of the matter of the universe.  Another instrument is the Advanced Laser Interferometric Gravitational Wave Observatory, which will be completed soon and will have a good chance of observing gravitational waves produced by pairs of neutron stars as they coalesce.  That’s just two examples.

Photograph (c) Matt Valentine - reproduced with permission (Penguin Books)

Comments

Popular posts from this blog

Beyond Weird - Philip Ball *****

It would be easy to think 'Surely we don't need another book on quantum physics.' There are loads of them. Anyone should be happy with The Quantum Age on applications and the basics, Cracking Quantum Physics for an illustrated introduction or In Search of Schrödinger's Cat for classic history of science coverage. Don't be fooled, though - because in Beyond Weird, Philip Ball has done something rare in my experience until Quantum Sense and Nonsense came along. It makes an attempt not to describe quantum physics, but to explain why it is the way it is.

Historically this has rarely happened. It's true that physicists have come up with various interpretations of quantum physics, but these are designed as technical mechanisms to bridge the gap between theory and the world as we see it, rather than explanations that would make sense to the ordinary reader.

Ball does not ignore the interpretations, though he clearly isn't happy with any of them. He seems to come clo…

Jim Baggott - Four Way Interview

Jim Baggott is a freelance science writer. He trained as a scientist, completing a doctorate in physical chemistry at Oxford in the early 80s, before embarking on post-doctoral research studies at Oxford and at Stanford University in California. He gave up a tenured lectureship at the University of Reading after five years in order to gain experience in the commercial world. He worked for Shell International Petroleum for 11 years before leaving to establish his own business consultancy and training practice. He writes about science, science history and philosophy in what spare time he can find. His books include Atomic: The First War of Physics and the Secret History of the Atom Bomb (2009), Higgs: The Invention and Discovery of the ‘God Particle’ (2012), Mass: The Quest to Understand Matter from Greek Atoms to Quantum Fields (2017), and, most recently, Quantum Space: Loop Quantum Gravity and the Search for the Structure of Space, Time, and the Universe (2018). For more info see: www…

Quantum Space: Jim Baggott *****

There's no doubt that Jim Baggott is one of the best popular science writers currently active. He specialises in taking really difficult topics and giving a more in-depth look at them than most of his peers. The majority of the time he achieves with a fluid writing style that remains easily readable, though inevitably there are some aspects that are difficult for the readers to get their heads around - and this is certainly true of his latest title Quantum Space, which takes on loop quantum gravity.

As Baggott points out, you could easily think that string theory was the only game in town when it comes to the ultimate challenge in physics, finding a way to unify the currently incompatible general theory of relativity and quantum theory. Between them, these two behemoths of twentieth century physics underlie the vast bulk of physics very well - but they simply can't be put together. String theory (and its big brother M-theory, which as Baggott points out, is not actually a the…