Skip to main content

Particle Physics: a very short introduction – Frank Close ****

Frank Close packs in a lot of information in this “very short” introduction (notice there’s no promise about difficulty!). That is at once this book’s biggest strength and its potential challenge. The reader who picks it up expecting a breezy, bird’s-eye-view of particle physics is in for a surprise. But if you stick with it, your efforts will be amply rewarded. In ten concise, albeit dense, chapters, Close covers everything from the basic scale of fundamental particles and forces and the three families of matter to quantum chromodynamics, the origins of mass, and even more esoteric subjects like dark matter.
The first four chapters are a particular delight. One of Close’s strengths is his ability to make extremely large or small quantities relatable by using apt analogies and by carefully explaining the units physicists use, such as electron volts. His writing is consistently accessible, unassuming and fun in a wry sort of way, but you never get the sense that he is dumbing down the subject matter or taking the sorts of shortcuts that lead to misunderstandings. These chapters serve as an admirable mini-introduction in their own right.
I have to admit that the fifth and sixth chapters, though worthwhile, occasionally tried my patience: these focus heavily on the history and development of particle accelerators and detectors. While I agree that covering the experimental side of particle physics is necessary in order to understand its current state, Close’s descriptions of cyclotrons, synchrotons, linear accelerators, emulsions, bubble and spark chambers, neutrino detectors and the likes could have benefitted from less historical detail, which is interesting but not essential.
In thinking about the book’s four last chapters, it’s inevitable to point out that these were written before the LHC discovered the Higgs boson in July 2012, so there is some speculation about the LHC that an updated edition would remove or replace. One wonders too, based on what we now know, whether speculative ideas such as supersymmetry, for which we have yet to find any experimental confirmation, might be de-emphasized. But these minor quibbles don’t detract much from an engaging and rigorous discussion of the standard model, antimatter and questions that remain open. Close’s clear, balanced approach is to be applauded. I should also point out that there are plenty of helpful diagrams and tables – as well as a few equations – throughout.
It seems only fair to acknowledge that rating this book using stars may seem a bit prosaic, given its subject matter. So I will translate this rating into particle physics terms: On a pentaquark (they haven’t been confirmed experimentally yet, but exist hypothetically) scale of book rating, I award this volume two positively charged K mesons. And if that just has you scratching your head, I encourage you to pick up this excellent primer.

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Alvaro Zinos-Amaro

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...