Skip to main content

Magical Mathematics – Persi Diaconis & Ron Graham ***

This is an oddity of a popular maths book in that the approachable bits of the book aren’t, on the whole, about maths but about magic. Magic is a strange topic – for me, certainly, it has a fascination. When I was at school I briefly flirted with the school’s magical society, but in the end I hadn’t the patience to practice the tricks over and over again until they were slick enough to be worth watching. I wanted instant magic that didn’t require sleight of hand ability. The other interesting thing about magic as a topic is that we seem, mostly, to have lost patience with the traditional forms. On the TV show Britain’s Got Talent, magicians mostly don’t fare well as the audience and judges don’t have the patience to sit through the build. We love Derren Brown’s dramatic showmanship, but not traditional tricks. This means that Persi Diaconis and Ron Graham have a potentially difficult audience.
Magical Mathematics really has three different threads interwoven. There’s biographical information about magicians (this is the smallest part). There are details of how to do tricks. And there’s the maths behind the tricks. These are actual tricks which at first sight should have appealed to my young self because they are worked by mathematics – the magician need have no physical dexterity. This sounds horribly like the kind of recreational maths (you know, magic squares and the like) that mathematicians get all excited about but for most people cause big yawns. However, when you look at some of these tricks in terms of the effect, they are very impressive. I particularly like one where five spectators each cut a pack of cards in turn, then take a card each. They are asked to do a simple thing (everyone with a red card stands up), and the magician then tells each of them which card they are holding. That really is impressive.
Of course there’s no gain without pain, and in the case of this trick, though there is no dexterity required, you do have to remember (or otherwise access) quite a lot of information. Even so it’s a great trick, and the maths behind it, on de Bruijn sequences (don’t ask) is also really interesting, including some real world applications of the mathematical structure that’s used. This is by far the most engaging bit of the book – but even here, the maths isn’t particularly well explained. I didn’t really get the first explanation and it was only because there’s a second chapter dedicated to the applications that I grasped what was going on. It’s not complicated, it’s just that the explanation isn’t particularly well written.
Other sections of the book proved less interesting. The tricks were not so impressive or the maths was obscure, hard to follow and, frankly, more than a little dull. It got even worse when juggling was brought into the mix, something that, along with mimes, should have been banished from the world many years ago. Only jugglers appreciate juggling.
The underlying thesis, that you can do real, entertaining magic driven by maths was interesting (though I wish it hadn’t concentrated so much on card magic, which is one of the less appealing aspects of the business). The idea of combining explanations of tricks with info on the maths was good too. But overall the book (and I’ve no idea why it’s in a near-coffee table format) didn’t really work for me.
Hardback:  
Also on Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

Beyond Weird - Philip Ball *****

It would be easy to think 'Surely we don't need another book on quantum physics.' There are loads of them. Anyone should be happy with The Quantum Age on applications and the basics, Cracking Quantum Physics for an illustrated introduction or In Search of Schrödinger's Cat for classic history of science coverage. Don't be fooled, though - because in Beyond Weird, Philip Ball has done something rare in my experience until Quantum Sense and Nonsense came along. It makes an attempt not to describe quantum physics, but to explain why it is the way it is.

Historically this has rarely happened. It's true that physicists have come up with various interpretations of quantum physics, but these are designed as technical mechanisms to bridge the gap between theory and the world as we see it, rather than explanations that would make sense to the ordinary reader.

Ball does not ignore the interpretations, though he clearly isn't happy with any of them. He seems to come clo…

Jim Baggott - Four Way Interview

Jim Baggott is a freelance science writer. He trained as a scientist, completing a doctorate in physical chemistry at Oxford in the early 80s, before embarking on post-doctoral research studies at Oxford and at Stanford University in California. He gave up a tenured lectureship at the University of Reading after five years in order to gain experience in the commercial world. He worked for Shell International Petroleum for 11 years before leaving to establish his own business consultancy and training practice. He writes about science, science history and philosophy in what spare time he can find. His books include Atomic: The First War of Physics and the Secret History of the Atom Bomb (2009), Higgs: The Invention and Discovery of the ‘God Particle’ (2012), Mass: The Quest to Understand Matter from Greek Atoms to Quantum Fields (2017), and, most recently, Quantum Space: Loop Quantum Gravity and the Search for the Structure of Space, Time, and the Universe (2018). For more info see: www…

Quantum Space: Jim Baggott *****

There's no doubt that Jim Baggott is one of the best popular science writers currently active. He specialises in taking really difficult topics and giving a more in-depth look at them than most of his peers. The majority of the time he achieves with a fluid writing style that remains easily readable, though inevitably there are some aspects that are difficult for the readers to get their heads around - and this is certainly true of his latest title Quantum Space, which takes on loop quantum gravity.

As Baggott points out, you could easily think that string theory was the only game in town when it comes to the ultimate challenge in physics, finding a way to unify the currently incompatible general theory of relativity and quantum theory. Between them, these two behemoths of twentieth century physics underlie the vast bulk of physics very well - but they simply can't be put together. String theory (and its big brother M-theory, which as Baggott points out, is not actually a the…