Skip to main content

Linda Schweizer - Four Way Interview

Linda Schweizer earned an MA in mathematics and a PhD in astronomy at UC Berkeley, with the visual arts and dance as her other passions. She observed southern-hemisphere galaxy pairs with several telescopes in cold dark domes in Chile, then modelled, analyzed, and published her work in 1987. Those papers on the statistical and dynamical modelling of dark matter in binary galaxy halos were, she says, just a small stone in the mosaic of our growing understanding of dark matter. A Carnegie Fellowship in Washington, DC, was her first science job. By then, she had her second daughter in the oven— with two more daughters to follow, and she turned her focus to properly preparing them for life. After 15 years, she returned to the world of astrophysics. After a brief stint in External Affairs, she taught science writing to undergraduate students at Caltech and loved it. She was a Visiting Scholar at Caltech while researching Cosmic Odyssey, an insider’s history of one of the greatest eras in astronomical development. Her passion for astronomy began at an early age with numerous trips to Griffith Observatory in Los Angeles, where she was fascinated by how scientific concepts were represented by models, motions, and large-scale graphics. Her creds include once designing and producing unique hand-made posters for the San Francisco Opera House, writing an award-winning booklet on telescopes and astronomy, and being awarded a Rockefeller Foundation grant to support the research and writing of Cosmic Odyssey.

Why astronomy?

Astronomy is the perfect amalgamation of physics, chemistry, biology, and art. I love first understanding complex ideas in physics or mathematics, and then visualizing them as art or a dancer’s movement. There is so much variety in astronomy: in which colour do you want to examine the universe? Infrared light from cool, dusty objects? Ultraviolet light from luminous quasars or newborn galaxies at the edge of the universe? Do you want to theoretically model the universe, or gather data on it?  Do you want to study the electron degeneracy deep inside collapsed stars, or the gaseous filaments of the cosmic web stretching across billions of light years? Astronomy is very intimate and resides within each of us for our entire lives as we grow, learn, emote, and love under its mysterious canopy. It connects us to each other and to all life on earth.

Why this book?

Ever since my graduate work, I was struck by how big a role Palomar played in the development of astrophysics in the 20th century. Only later I realized why. Palomar is a 'Goldilocks' observatory! It was the right size to do some serious work; it appeared at the right time—in the mid-twentieth century—for war technology to yield infrared and radio detectors that opened new windows on the universe; and it was in the right place, nestled in pristine high mountains not too far from Caltech, Mount Wilson Observatory, and the Jet Propulsion Laboratory. Working at both Carnegie and Caltech, I got to know many astronomers who made fundamental discoveries at Palomar, and I was in a unique position to interview them and build the backstory of Cosmic Odyssey. I took the opportunity to interview more than 100 people to portray a behind-the-scenes view of how science is done by imperfect, yet inspiring, scientists. Most people only see the final announcement of a discovery and the publicity that goes with it. They miss out on the raw images that yield new insights, and the rivalries and collaborations that fuel scientists’ ambitions. In addition to digging into the science and history of astronomy at Palomar, my book also lifts the curtain on the process of discovery, and I hope it will inspire a new generation of young scientists. 

What's next?

To keep the story flowing and focused while writing Cosmic Odyssey, a lot of material was left on the cutting-room floor. Not only scientific material, but fascinating human stories: the artistic maverick who grows perfectly-formed orchids while observing mangled mashups of galaxies—and pries open the field of galaxy evolution; the old astronomer who miraculously recognizes the feeble lines of radioactive technetium in a stellar spectrum crowded with atomic and molecular lines—and proves that nuclear furnaces, not the big bang, produce most of the chemical elements. So, maybe there’s another book waiting in the wings. I am also drawn to writing a similar book for children

What's exciting you at the moment?

For the past ten years, I’ve been focused on the world I’ve built within my book, Cosmic Odyssey. Now, I’m looking forward to exploring everything else in the universe!


Popular posts from this blog

A Citizen's Guide to Artificial Intelligence - John Zerilli et al ****

The cover of this book set off a couple of alarm bells. Not only does that 'Citizen's Guide' part of the title raise the spectre of a pompous book-length moan, the list of seven authors gives the feel of a thesis written by committee. It was a real pleasure, then, to discover that this is actually a very good book. I ought to say straight away what it isn't - despite that title, it isn't a book written in a style that's necessarily ideal for a general audience. Although the approach is often surprisingly warm and human, it is an academic piece of writing. As a result, in places it's a bit of a trudge to get through it. Despite this, though, the topic is important enough - and, to be fair, the way it is approached is good enough - that it deserves to be widely read. John Zerilli et al give an effective, very balanced exploration of artificial intelligence. Although not structured as such, it's a SWOT analysis, giving us the strengths, weaknesses, opportun

Grace Lindsay - Four Way Interview

Grace Lindsay is a computational neuroscientist currently based at University College, London. She completed her PhD at the Centre for Theoretical Neuroscience at Columbia University, where her research focused on building mathematical models of how the brain controls its own sensory processing. Before that, she earned a bachelor’s degree in Neuroscience from the University of Pittsburgh and received a research fellowship to study at the Bernstein Center for Computational Neuroscience in Freiburg, Germany. She was awarded a Google PhD Fellowship in Computational Neuroscience in 2016 and has spoken at several international conferences. She is also the producer and co-host of Unsupervised Thinking , a podcast covering topics in neuroscience and artificial intelligence. Her first book is Models of the Mind . Why science? I started my undergraduate degree as a neuroscience and philosophy double major and I think what drew me to both topics was the idea that if we just think rigorously enou

The Science of Can and Can't - Chiara Marletto *****

Without doubt, Chiara Marletto has achieved something remarkable here, though the nature of the topic does not make for an easy read. The book is an attempt to popularise constructor theory - a very different approach to physics, which Oxford quantum physicist David Deutsch has developed with Marletto. Somewhat oddly, the book doesn't use the term constructor theory, but rather the distinctly clumsier 'science of can and can't'. The idea is that physics is formulated in a way that is inherently limited because it depends on using mechanisms that follows the progress of dynamic systems using the laws of physics. This method isn't applicable in circumstances where either something may happen, but won't necessarily, nor where something isn't allowed to happen (hence the science of can and can't, which probably should be the science of could and can't if we are going to be picky). Deutsch and Marletto have proposed a way of using 'counterfactuals'