Skip to main content

Quantum Space: Jim Baggott *****

There's no doubt that Jim Baggott is one of the best popular science writers currently active. He specialises in taking really difficult topics and giving a more in-depth look at them than most of his peers. The majority of the time he achieves with a fluid writing style that remains easily readable, though inevitably there are some aspects that are difficult for the readers to get their heads around - and this is certainly true of his latest title Quantum Space, which takes on loop quantum gravity.

As Baggott points out, you could easily think that string theory was the only game in town when it comes to the ultimate challenge in physics, finding a way to unify the currently incompatible general theory of relativity and quantum theory. Between them, these two behemoths of twentieth century physics underlie the vast bulk of physics very well - but they simply can't be put together. String theory (and its big brother M-theory, which as Baggott points out, is not actually a theory at all but simply a conjecture) has had much written about it. But the main alternative theory, loop quantum gravity has had far less coverage. As I mentioned in another review (and Baggott also picks this up), in one whole book on gravity, loop quantum gravity is only mentioning in an endnote. Yet in many ways, loop quantum gravity has a lot more going for it than string theory.

One major strand of Quantum Space is a biography of two key players in the field - Lee Smolin and Carlo Rovelli, both good writers for the general public in their own right, but neither has been able to come close to what Baggott does in trying to make the ideas of loop quantum gravity accessible at a deeper level than a summary, hand-waving description. It’s also the first complete and approachable account I’ve seen of how both approaches to a quantum theory of gravity were derived. The only downside of the way it's structured is that I think if you’re going to be comfortable with the level of detail Baggott gives, you probably don’t need the first 100 pages or so giving background on quantum theory and general relativity.

My only real concern apart from that unnecessary opening material, which makes the book a little too long for my tastes, is that there could have been more unpacking of how loop quantum gravity represents reality - the jump from the introduction of spin networks to anything resembling a theory that can be applied to a real world where things happen is overwhelming. I had to resort to the much valued advice of one of my supervisors at university who said 'Don't worry if it doesn't all make sense, just keep on with it and hopefully it will all come together.' It almost all did all come together, but I was left with a nagging doubt that I couldn't really grasp the foundation of the whole idea.

As well as coming out of reading this book with significantly more respect for Rovelli (whose popular science writing I find flowery and overrated), I feel that Baggott has done a huge favour for anyone who really wants to understand modern theoretical physics, giving a much better understanding of this fascinating attempt to deal with a central requirement to explain the workings of our universe. It's a triumph.
Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Post a comment

Popular posts from this blog

Lucy Jane Santos - Four Way Interview

Lucy Jane Santos is an expert in the history of 20th century leisure, health and beauty, with a particular interest in (some might say obsession with) the cultural history of radioactivity. Writes & talks (a lot) about cocktails and radium. Her debut book Half Lives: The Unlikely History of Radium was published by Icon Books in July 2020.

Why science?

I have always been fascinated by the idea of science especially our daily interactions with and understandings of science – especially in a beauty context. I could spend hours pondering the labels of things on my bathroom shelf. What is 4-t-butylcyclohexanol (as a random example)? Do I really understand what I am putting on my face and spending my money on? Would it change my purchase habits if I did?  

Why this book?

This book came from an accidental discovery – that there was a product called Tho Radia which contained radium and thorium. I found out about it because I actually bought a pot of it – along with a big batch of other produc…

Rewilding: Paul Jepson and Cain Blythe ****

Those who are enthusiastic about saving the environment often have a mixed relationship with science. They might for example, support organic farming or oppose nuclear power, despite organics having no nutritional benefit and requiring far more land to be used to raise the same amount of crops, while nuclear is a green energy source that should be seen as an essential support to renewables. This same confusion can extend to the concept of rewilding, which is one reason that the subtitle of this book uses the word 'radical'.

As Paul Jepson and Cain Blythe make clear, though, radical change is what is required if we are to encourage ecological recovery. To begin with, we need to provide environments for nature that take in the big picture - thinking not just of individual nature reserves but, for example, of corridors that link areas allowing safe species migration. And we also need to move away from an arbitrary approach to restricting to 'native' species, as sometimes…

Is Einstein Still Right? - Clifford Will and Nicolas Yunes ***

If there's one thing that gets a touch tedious in science reporting it's the news headlines that some new observation or experiment 'proves Einstein right' - as if we're still not sure about relativity. At first glance that's what this book does too, but in reality Clifford Will and Nicolas Yunes are celebrating the effectiveness of the general theory of relativity, while being conscious that there may still be situations where, for whatever reason, the general theory is not sufficient.

It's a genuinely interesting book - what Will and Yunes do is take experiments that are probably familiar to the regular popular science reader already and expand on the simplified view of them we are usually given. So, for example, one of the first things they mention is the tower experiments to show the effect of gravitational red shift. I was aware of these experiments, but what we get here goes beyond the basics of the conceptual experiment to deal with the realities of d…