Skip to main content

Reality Is Not What It Seems - Carlo Rovelli ***

I was no great fan of Carlo Rovelli's flowery, overpriced previous title, and the introduction to this book on loop quantum gravity has a similar style, but thankfully it settles down a little. However, there is still rather too much of the woffle, reverting to floral form on Lucretius and his atomist poem on nature. For those who remember How to be Topp, this is the Fotherington Thomas school of popular science - all 'Hullo clouds, hullo sky!'

We then get onto Galileo. At times, Rovelli's history of science goes wildly astray - he says, for example, that Galileo was the first experimenter -  what of William Gilbert or the medieval optical experiments, for example? Similarly, Rovelli tells us that no one from Newton to Faraday tried to come up with an explanation for action at a distance - which just isn't true. Not only did Newton himself have an idea, there were plenty of mechanisms proposed. This isn't a matter of obscure history, you can read about it in Wikipedia. Best then to move on from mangled recounting of the past and get on to the more recent physics.

Here, in a gallop through special and general relativity and quantum theory we get far more rigour, though oddly it often comes in ways that aren't always obvious - for example we jump into to general relativity with the idea that spacetime is a field, without any of Einstein's far more accessible route using the equivalence principle. It fits better with the model that Rovelli is using, but it doesn't help the reader understand what he is talking about.

The last part of the book takes in what has been its goal all along - loop quantum gravity. In his opening, Rovelli remarks that a book (for the public) on loop quantum gravity didn't exist which is why he had to write it. This isn't true, there was Martin Bojowald's Once Before Time - but that failed singularly to explain the theory in a comprehensible way. This is where I hoped I could finally get the point of Rovelli's writing. I desperately want to see a good, accessible introduction to loop quantum gravity.The good news is that Rovelli on the topic reads a lot more smoothly than anything I've so far read - but he still fails to bring the topic to a level the general reader can get his or her head around. The book should have had an editor brave enough to keep sending it back until Rovelli had got there, but it clearly didn't happen.

You may gather I had problems with this book, but I have to congratulate Rovelli for trying. What was most frustrating was that if loop quantum gravity were as obvious to physicists and as complete as it's presented, it would be quantum gravity solved and no one would be bothering about string theory (which Rovelli only gives a passing mention to). Tick. Next problem? We know it's not really like that. Also, like many physicists seem to do, Rovelli either doesn't realise a model isn't the same as reality, or forgets to explain this to his readers. Even so, it is an interesting book despite its problems.


Hardback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

The Antigravity Enigma - Andrew May ****

Antigravity - the ability to overcome the pull of gravity - has been a fantasy for thousands of years and subject to more scientific (if impractical) fictional representation since H. G. Wells came up with cavorite in The First Men in the Moon . But is it plausible scientifically?  Andrew May does a good job of pulling together three ways of looking at our love affair with antigravity (and the related concept of cancelling inertia) - in science fiction, in physics and in pseudoscience and crankery. As May points out, science fiction is an important starting point as the concept was deployed there well before we had a good enough understanding of gravity to make any sensible scientific stabs at the idea (even though, for instance, Michael Faraday did unsuccessfully experiment with a possible interaction between gravity and electromagnetism). We then get onto the science itself, noting the potential impact on any ideas of antigravity that come from the move from a Newtonian view of a...

The World as We Know It - Peter Dear ***

History professor Peter Dear gives us a detailed and reasoned coverage of the development of science as a concept from its origins as natural philosophy, covering the years from the eighteenth to the twentieth century. inclusive If that sounds a little dry, frankly, it is. But if you don't mind a very academic approach, it is certainly interesting. Obviously a major theme running through is the move from largely gentleman natural philosophers (with both implications of that word 'gentleman') to professional academic scientists. What started with clubs for relatively well off men with an interest, when universities did not stray far beyond what was included in mathematics (astronomy, for instance), would become a very different beast. The main scientific subjects that Dear covers are physics and biology - we get, for instance, a lot on the gradual move away from a purely mechanical views of physics - the reason Newton's 'action at a distance' gravity caused such ...

God: the Science, the Evidence - Michel-Yves Bolloré and Olivier Bonnassies ***

This is, to say the least, an oddity, but a fascinating one. A translation of a French bestseller, it aims to put forward an examination of the scientific evidence for the existence of a deity… and various other things, as this is a very oddly structured book (more on that in a moment). In The God Delusion , Richard Dawkins suggested that we should treat the existence of God as a scientific claim, which is exactly what the authors do reasonably well in the main part of the book. They argue that three pieces of scientific evidence in particular are supportive of the existence of a (generic) creator of the universe. These are that the universe had a beginning, the fine tuning of natural constants and the unlikeliness of life.  To support their evidence, Bolloré and Bonnassies give a reasonable introduction to thermodynamics and cosmology. They suggest that the expected heat death of the universe implies a beginning (for good thermodynamic reasons), and rightly give the impression tha...