Skip to main content

James D. Stein - Four Way Interview

James D. Stein writes: I was lucky; I had educated parents who stressed the value of education.  I obtained a solid general education at New Trier High School and Yale University, and I was fortunate to have Professor William Bade as my thesis advisor at the University of California at Berkeley – without his tolerance, I might never have finished, because I would disappear for weeks at a time playing duplicate bridge.  I taught briefly at UCLA and then went to California State University, Long Beach – where I met my wife Linda.  I retired from CSULB a couple of years ago, but because there was still some gas left in the tank, I teach one course a semester at El Camino Community College, located about ten minutes from my home in Redondo Beach.  I’ve been exceptionally fortunate to have a career teaching a subject that I love, to have the freedom to investigate problems I thought were interesting, and to have had the opportunity to share my appreciation for math and science by writing books about these subjects.  

His latest book is the collection of mathematical crime stories, L. A. Math.


Why Math?

I’d always been fascinated by numbers, but I can still remember the first time I really got interested in math in the sense that mathematicians think about it.  It was an autumn day, and I was about seven years old, and I wanted to toss a football (American) around with my father.  My father, who kept rigorous accounts on a large yellow sheet that looked sort of like a spreadsheet (this was in 1948), said, “I just need to figure out where I made my error.  I’m off by 36 cents, and since it’s divisible by 9, it means that I probably switched the places of two digits.”  While I was waiting for him, I looked at some examples.  For instance, if you should have written 62 and you wrote 26 instead, the difference is 62 – 26 =36, which is divisible by 9.  I checked several examples and it always worked.  Of course, at age seven, I wasn’t going to come up with the idea of a mathematical proof, but it did occur to me that if this was ALWAYS true, maybe there was some way to do it without checking all the possible cases.  And that’s part of the beauty of math; you can establish truth by logical argument rather than tedious checking.

Why This Book?

I’d taught Math for Liberal Arts students maybe ten times, taking different approaches – but although the good students would always do well enough to get an A in the course, they were basically just cramming.  Just like I did in history courses.  And, not surprisingly, shortly thereafter they remembered nothing – just like I remembered nothing about my history courses.  It occurred to me that there was nothing memorable for them about learning mathematical ideas and procedures – just like there was nothing memorable for me in learning about kings and battles.  So it occurred to me to try to put the ideas in a context that they might remember.  An intriguing story is memorable – everyone remembers a good story.  

I tried to write stories that were enjoyable and incorporated some mathematical ideas as part of the story.  If someone who doesn’t really ‘get’ math reads the book and remembers a few of the ideas that go along with the stories, I’m ahead of the game – because, sadly, students who aren’t interested in math just don’t remember mathematical ideas as math courses are currently taught. 

At any rate, writing it was an extremely interesting experience.  I’d written a number of what are called trade books – books about math and science for interested and intelligent readers, but I’d never written fiction.  And to a certain extent, I didn’t really write fiction – almost all the characters are amalgams of people I’ve known and a lot of the situations actually happened.  So much of it was more like recounting anecdotes than actually writing fiction.

What’s Next?

I have a project that I’m trying to get started involving general education.  I call it ‘Introduction to Everything’.  To paraphrase a remark made by Richard Feynman to CalTech students in 1961, if, in some cataclysm, all of the knowledge of humanity were to be destroyed, and only one book passed on to the next generation of creatures, what book would contain the most information about humanity in the fewest words? It would be a book summarizing the ten most important developments in each of the most important areas of natural science, social science, the humanities and history, ranked in order of importance by a panel of experts who have devoted their lives to the study of these subjects.  I think such a book would be tremendously valuable, and everyone – well, almost everyone – would want to read it.  Top Ten lists are fascinating to almost everyone.  Wouldn’t you want to read it?  I know I would.  Along with a description of exactly what each development represents, you’d have a one-volume summary which would be the equivalent of a good basic education in practically everything.  

Scientists are always complaining that the general public doesn’t know the important ideas of science.  That’s partly our fault – the scientific community hasn’t said, “These are the important developments.”  If you take an introductory course in science, instead of being fascinating, it’s pretty boring – because we don’t hit the high points.  How can we, when we haven’t even decided what the high points are?  So let’s decide what they are – in history and the humanities as well – and make this knowledge available to everyone.

What’s Exciting You at the Moment?

I think we live in fascinating times.  Our ability to communicate more quickly and effectively has never been higher, and this accelerates scientific and technological progress.  I’m basically an optimist, and I believe that a lot of the problems we face as a species will disappear once we can assure a good quality of life for everyone.  Every day I look forward to reading about exciting new developments in science and technology.  

I also look forward to seeing whether Fed can win his 18th Grand Slam, whether Rafa will regain his game during the clay court season, and whether Novak Djokovich can maintain the unbelievably high standard of play that has characterized his game for the past several years. 

Comments

Popular posts from this blog

Ancestral Night (SF) - Elizabeth Bear *****

Only a couple of weeks ago, reviewing a 1960s SF book, I bemoaned the fact that science fiction novels of ideas are less common now. Although it is correctly labelled a space opera, Ancestral Night delivers ideas with aplomb.

Let's deal with the space opera aspect first. Elizabeth Bear provides some excellent adventure scenes in space, and we've the usual mix of huge spaceships and interesting aliens. Main character Haimey Dz is an engineer on a ship that salvages wrecks - but, as we gradually discover - she also has a forgotten past. A major feature of the storyline (one that seems to link to the medieval idea of the lost wisdom of the past) is ancient technology from a long-dead race with capabilities, notably manipulating spacetime mentally (Bear has yet to point out that the travel technologies used here could manipulate time as well as space), which fit well with Arthur C. Clarke's magic definition.

I particularly liked the (surely intentional) nods to the much-misse…

The Creativity Code - Marcus du Sautoy *****

At first glance this might just be another 'What AI is good at and not so good at' title. And in a way, it is. But, wow, what a brilliant book! Marcus du Sautoy takes us on a tour of what artificial intelligence has achieved (and possibly can in the future achieve) in a range of fields from his own of mathematics, through game playing, music, art and more.

After a little discussion of what creativity is, we start off with the now very familiar story of DeepMind's AlphaGo and its astonishing ability to take on the hugely challenging game of Go. Even though I've read about this many times before, du Sautoy, as a Go player and mathematician, gives a real feel for why this was such a triumph - and so shocking. Not surprisingly he is also wonderful on what mathematicians actually do, how computers have helped them to date and how they have the potential to do far more in the future. After all, mathematics is by far the closest science to game playing, as it has strict rule…

The Demon in the Machine - Paul Davies *****

Physicists have a habit of dabbling in biology and, perhaps surprisingly, biologists tend to be quite tolerant of it. (I find it hard to believe the reverse would be true if biologists tried to do physics.) Perhaps one reason for that tolerance is Schrödinger’s lecture series and book What is Life?, which had a huge impact on molecular biology and with a reference to which, not surprisingly, Paul Davies begins his fascinating book. 

At the heart of the The Demon in the Machine (we'll come back to that demon in a moment) is the relationship between life and information. In essence, Davies points out that if we try to reduce life to its simple physical components it is like trying to work with a computer that has no software. The equivalent of software here is information, not just in the best publicised aspect of the information stored in the DNA, but on a far broader scale, operating in networks across the organism.
This information and its processing gives life its emergent compl…